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Abstract. Collective computational intelligence can be used in several
ways, for example as taking the decision together by some form of a bag-
ging ensemble or as finding the solutions by multi-objective evolutionary
algorithms. In this paper we examine and compare the application of
the two approaches to instance selection for creating the Pareto front
of the selected subsets, where the two objectives are classification accu-
racy and data size reduction. As the bagging ensemble members we use
DROP5 algorithms. The evolutionary algorithm is based on NSGA-II.
The findings are that the evolutionary approach is faster (contrary to
the popular belief) and usually provides better quality solutions, with
some exceptions, were the outcome of the DROP5 ensemble is better.

1 Introduction

Data preprocessing is frequently the most important step in data mining, even
more important than choice of the classifier and its parameters, as even the best
classifier cannot produce good outcome if the data quality is poor. One part of
data preprocessing is data selection. Improving the data quality is one objective
of data selection. The other objective is limitation the data size to make the data
easier to interpret and analyze and to make the learning process faster. The data
selection process can be seen as a two-objective optimization, aimed at data size
reduction and classification accuracy improvement. Frequently it happens that
a small reduction of data size (when done properly) can achieve both objectives.
Although further reduction of data size also reduces the prediction accuracy, it
can still be beneficial for data analysis and fast experiments with the learning
model.

In this work we want to find a Pareto-front in the compression-accuracy
space - that is such a set of solutions, that for any of them there does not exist a
solution that can simultaneously improve both: compression and accuracy. The
closer is the Pareto front situated to the 0% of selected instances and 100%
accuracy point in the accuracy-compression space (upper-left corner in Figs. 2,
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4, 5, and 6.) the better. Data selection can be decomposed into feature and
instance selection and in our previous work [1] we analyzed the relations and
interactions between feature and instance selection. In this work we focus on
instance selection and its Pareto-Front.

The first (obvious) observation is that in order to achieve the front we need
many solutions. On the other hand most instance selection methods produce
only a single solution. There are two ways to obtain the Pareto front. One is to
perform the instance selection multiple times with different parameters of the
instance selection method, that however can be applied only to these instance
selection methods that can be parameterized in this way. The other solution is to
use ensembles or populations of instance selection algorithms [2,3,9]. Ensemble
methods are widely used in classification and regression problems as they are
known to obtain better results than the single best method. The same can be
applied to instance selection and the same methods of differentiating the results
can be applied (as instance bagging or feature bagging for example) and different
voting schemes can be used to move along the Pareto front, as discussed in
Sect. 2.

Evolutionary algorithms in contrast use populations and cooperation between
the population members (using the crossover operator). There are also known
multi-objective evolutionary algorithms, as the NSGA-II [4], which provides
additional operators to ensure that the best members of the population occupy
possibly uniformly the Pareto front. Using them is simply faster than running
many single-objective optimizations with different parameters and it may also
produce better results (lower Pareto front), as discussed in Sect. 3.

In Sect. 4 we experimentally compare the Pareto front obtained by the two
approaches: a bagging ensemble of DROP5 algorithms and an NGSA-II based
evolutionary instance selection.

2 Bagging Ensembles of DROP5 Instance Selection
Algorithms

The ensemble methods are proved to be efficient for enhancing the classification
process and many solutions are widely used for that purpose [5].

However, the idea of ensembles of instance selection algorithms has been
considered only by few authors. The first idea related to ensembles was presented
in the all-kNN algorithm, where the several ENN algorithms with different k
values were used [6]. In [7] the authors attempted to adapt boosting to instance
selection, where the objective was not only to improve the success rate, but also
to reduce the data size. The weight given by boosting to each instance defined
relevance of the instance, and a statistical test was used to decide whether it can
be discarded without affecting classification accuracy.

In [8] classifier ensembles were constructed using weighted instance selection.
In [3,9] two variants of bagging of instance selection algorithms were discussed;
in the first paper feature based bagging and in the second instance-based bag-
ging. In [10] the authors applied boosting for several instance selection algo-
rithms, as CNN, IB3, DROP3, ICF, approaching the instance selection problem
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as a two-class classification. They tested several boosting methods, as AdaBoost,
FloatBoost, MultiBoost, ReweightBoost and the obtained results confirmed that
in most cases the boosting methods showed better performance than the single
instance selection algorithm.

The boosting methods, should be used only after applying noise filter or on
data that does not require noise filters. Otherwise, the noisy instances would
be promoted by the algorithm, as they are usually mis-classified, what can lead
to incorrect results. For the same reason in the DROP (Decremental Reduction
Optimization Procedure) algorithm noise filter is applied before the condensation
part [11].

The ENN (Edited Nearest Neighbor) [11] algorithm is a noise filer. It starts
from a whole dataset and check which instances are wrongly classified by k-NN.
Each wrongly classified instance is marked for removal. Finally all the instances
marked for removal get removed.

The instance selection algorithms from the DROP family methods belongs to
the best instance selection methods for classification tasks [12,13]. Two concepts
are defined in those methods: nearest neighbors and associates. Nearest neighbors
of an instance p are those k instances to which the distance from the instance
p is shorter than to the remaining instances. Associates are those instances that
have p as one of their k nearest neighbors.

The DROP5 algorithm used in this work was developed based on its prede-
cessors in the following way:

– DROP1 eliminates an instance p, if this does not affect the classification of
its associates.

– DROP2 before starting the selection sorts the instances in descending order
by the distances from the instance to its nearest enemy (the instance from
another class). So first the instances located among the same class instances
are processed and later the instances close to the class boundary.

– DROP3 additionally first applies a noise filter that works like the ENN algo-
rithm, removing the instances incorrectly classified by k-NN.

– DROP4 applies a modified version of the noise filter, by additionally verifying
if removing an instance does not cause a misclassification of another instance
and if it does, the instance will not be removed.

– DROP5 is similar to DROP2, but instead of using the noise filter, it starts the
analysis from the instances that are closest to the nearest enemies (those on
the class boundary). In this way as a matter of fact the noise filter is applied
at the first stage. However, its computational complexity is still O(n3).

To obtain the Pareto front we used an ensemble of 10 instance selection
algorithms, were the differentiation between the ensemble members was achieved
by providing to each member a random subset of the data set. Then we analyzed
how many members of the ensemble voted for each instance and thus we obtained
10 datasets: the first one containing the instances for which every member voted
(however, this was frequently an empty set), the next one for which at least 9
members voted, and so one. The last subset was the biggest and contained the
instances for which at least one member voted. We evaluated the classification
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accuracy for classifiers trained on each of the datasets on the test set. In this way
we obtained the Pareto front in the compression-accuracy space. That allows us
to select one point on the front depending on the importance we assign to the
compression and classification accuracy. The results are presented in the Sect. 4.

3 NSGA-II Based Evolutionary Instance Selection

The way in which standard genetic or evolutionary algorithms work is with very
high probability well known to the reader so we will not waste space explaining
this, especially that all the details can be easily found in literature [4,14–16].

There are two fundamental differences between the classical and
evolutionary-based instance selection algorithms. In the first case a single solu-
tion is obtained and some properties of the search must be a priori defined, as
for example how to tell the boundary point from the point situated among the
same class members, how to define a noisy point and so on. A great advantage
of evolutionary-based instance selection is that we do not have to carry about
all the definitions and parameters.

Each individual in the genetic population encodes the entire training set and
the value at each chromosome position indicates whether the instance is present
(value > 0) or not (value = 0). In case of instance selection the first value = 1.
In case of instance weighting it can be a real number between 0 and 1. Most
of evolutionary approaches to instance selection define the fitness function in a
similar way, as a weighted sum of the achieved compression and classification
accuracy on the test set. Thus to obtain a set of solutions the optimization
has to be performed several times with various weights. However, this can be
avoided using a multi-objective evolutionary algorithms [4,16], as we use in the
experimental section.

There have been already some propositions in the literature to use genetic
or evolutionary algorithms for instance selections [17–22]. The results obtained
by these authors were better in terms of accuracy-compression balance than the
results of the best classical algorithms as DROP3, DROP4 and DROP5, however
they compared only single points and not the whole Pareto fronts.

It is widely believed that evolutionary optimization can find better solutions
that the local search or gradient based-solutions, but its computational cost is
much higher. As the first statement is generally true, we show in this work that in
the case of instance selection the second statement can be false. The evolutionary
instance selection method we use can find the solution in O(n2) time, while the
best classical methods, as the DROP family has the O(n3) complexity, which for
large datasets can be prohibitive. Thus in that case evolutionary methods can
be better at both: the obtained results and the evaluation time. We calculate
and sort the distance matrix only once at the beginning of the optimization and
then reading the classes of the nearest neighbors from the sorted arrays is very
fast.

Because the purpose of this work is to obtain not a single solution, but
a Pareto front that consists of the set of the best solutions (called also non-
dominated solutions), we use a multi-objective evolutionary algorithm based
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on NSGA-II [4], as shown in the pseudo-code. The two criteria that we use are
compression and classification accuracy. We tested 3 different solutions: based on
single-objective evolutionary algorithm with changing the weights for accuracy
and compression in the fitness function, the SEEA-based solution [4] and the
NSGA-II based solution. The last one in most cases produced the best results,
so we decided to use it in the final experiments.

Although there are newer multi-objective evolutionary algorithms, NSGA-II
often produces the best or at equal results, and due to the fact that the NSGA-II
method is well known, we have decided to use it and modify it for the purpose
of this study, by adjusting it to binary instance weights, introducing the proper
population initialization (the probability of zero is set to the expected compres-
sion level) [23] and additional parameters that force the small values to zeros
(which rejects the not very useful instances). In [24] the authors investigated
the concept of e-dominance with multi-objective evolutionary algorithms and
found out that in some cases this concept significantly helps to reduce the exe-
cution time. However, e-dominance can also drastically slow down the process
for problems where the number of objective vectors is small. We did not use
e-dominance, because in our case it did not improved the performance.

We can perform either binary instance selection or instance weighting. With
instance weighting each instance is assigned a value between 0 and 1 represent-
ing the importance of this instance. While calculating the majority class of an
instance k-NN adds the class of its neighbors multiplied by their weights. To
calculate the compression we treat as rejected only those instances with zero
weights and all others as selected. If during the optimization a given weight in
a given individual takes a value below some threshold (e.g. 0.01) it is forced
to zero to ensure effective instance rejection. The instance weighting method
allows for achieving higher accuracy in the regions of very stronger compression.
However, instance weighting is mostly useful for the instance selection process.
In the final prediction all the non-zero values can be converted to ones usually
with little loss of accuracy. But if we are focused more or accuracy improvement
then binary values used during the optimization are usually producing better
solutions with low compression but high prediction accuracy, frequently even
above the accuracy obtained on the entire dataset (with the exception of situa-
tions as in Fig. 6). There is much more to study in the area of instance selection
vs instance weighting and the detailed analysis will be conducted in our future
research.

4 Experiments and Results

We conducted the experiments on classification datasets from the KEEL Repos-
itory [25]. The experiments with DROP5 were performed in RapidMiner using
the Data Selection Extension [3,9] with the Weka Instance Selection Module
[26], which contained the DROP5 algorithm. The experiments with evolutionary
instance selection were performed using a software we created in C# language.
We make available all the software, including GPU-based implementation (with
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Algorithm 1. NSGA-II
1: P := initialization(N,M) //P is population, F is Pareto front
2: evaluation(P)
3: F = fast_nondominated_sort(P, N)
4: crowding_distance(F)
5: while stop_condition() do
6: P′ = ∅
7: for i = 1 to N do
8: parentA = select_parent(P)
9: parentB = select_parent(P)

10: child = new_individual(parentA, parentB)
11: P′ = P′ ∪ child
12: end for
13: evaluation(P′)
14: P = P ∪ P′

15: F = fast_nondominated_sort(P, 2N)
16: crowding_distance(F)
17: P = selection(P,F)
18: end while
19: return F1 {list of non dominated individuals}

Nvidia Cuda Toolkit) of evolutionary instance selection and the detailed results
of all the experiments so that the interested reader can find much more infor-
mation at our web page www.kordos.com/icaisc2018.

Although the computational time between different implementations could
not be compared directly, as the RadidMiner implementations are generally much
slower due to several reasons, its dependence on the number of instances can be.
In the first case it was almost O(n3) what agrees with the theoretical complex-
ity of the DROP algorithms and in the second case it was about O(nlog(n)),
although we are aware that for a datasets much bigger than that used in the
experiments it may asymptotically approach O(n2), which is the complexity of
calculating the distance matrix for k-NN. Of course the time can be reduced
in both cases by using more advanced approximate calculations of the distance
matrix, but this will not change the relation.

All the tests were run in 10-fold crossvalidation. However, first we randomly
changed the order of the instances in each dataset and then we used linear
sampling in crossvalidation to ensure that both of the methods use exactly the
same training and test subsets - so that the comparison is made on exactly the
same data. DROP5 produces the same results with each run on the same data.
The NSGA-II based optimization while repeated on the same data displays some
variability, but mostly in the number of selected instances and the variability
of the obtained accuracy is really very low, as can be seen from the figures
how closely particular points adhere to the blue line. The accuracy obtained on
the whole dataset is shown in the green line. The final classification algorithm
and the inner evaluation algorithm was k-NN with optimal k for each dataset
(the k allowing for the highest classification accuracy). Also the same k value
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was used for DROP5. The optimal k was usually 1 for the datasets, where the
achievable classification accuracy was about 99% and growing with the decrease
of the accuracy, reaching 7 or more for the accuracies below 80%. However,
in the experiments, we limited the maximum k to 7. For the NSGA-II based
optimization we used S = 96 individuals and from E = 20 to 200 epochs - more
for larger datasets.

We also trained decision trees of the type described in [27] and the MLP
neural networks with the VSS algorithm [28] on the selected subsets to verify
how other classifiers would work on the data and the classification accuracies
were highly correlated to that obtained with the optimal k k-NN. We have also
observed some interesting issues about the optimization of instance selection
process for particular final classifier models. However, formulating the conclu-
sions and recommendations require further studies, which will be another topic
of our future research (Fig. 1).

Fig. 1. The experimental setup

5 Conclusions

We discussed the problem of obtaining a Pareto front in the accuracy-
compression space in instance selection. We evaluated two approaches: bagging



Obtaining Pareto Front in Instance Selection 445

Fig. 2. The Pareto fronts for Balance (left) and Ionosphere (right) datasets. Light
green: accuracy without instance selection. (Color figure online)

Fig. 3. The Pareto fronts for Yeast (left) and Led7digit (right) datasets. (Color figure
online)

Fig. 4. The Pareto fronts for Bupa (left) and Vehicle (right) datasets. (Color figure
online)
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Fig. 5. The Pareto fronts for Magic (left) and Pageblocks (right) datasets. (Color figure
online)

Fig. 6. The Pareto fronts for Twonorm (left) and Penbased (right) datasets. (Color
figure online)

of DROP5 algorithms and multi-objective evolutionary optimization based on
the NSGA-II algorithm. DROP5 was selected as it was one of the best non-
evolutionary instance selection algorithms. The NGSA-II was chosen as one of
the best multi-objective evolutionary algorithms. However, we had to adjust it
to instance selection problem. The experiments showed the superiority of the
evolutionary approach in terms of computational time and also terms of Pareto
front position with the exception of the datasets with very high compression
(about 1% remaining instances) obtained for high accuracy (above 98%), where
the DROP5 ensembles were better. It is the problem with the NSGA-II method
that in order to create an equally distributed front, it does not prefer the extreme
solutions, so the front gets narrowed from both sides. We are currently working
on this problem and we hope it will be solved soon (Fig. 3).
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