
Schedae Informaticae Vol. 25 (2016): 153–164
doi: 10.4467/20838476SI.16.012.6193

Data Selection for Neural Networks

Miroslaw Kordos
Department of Computer Science and Automatics

University of Bielsko-Biala
Willowa 2, 43-309 Bielsko-Biala

e-mail: mkordos@ath.bielsko.pl

Abstract. Several approaches to joined feature and instance selection in neural

network leaning are discussed and experimentally evaluated in respect to classi-

fication accuracy and dataset compression, considering also their computational

complexity. These include various versions of feature and instance selection

prior to the network learning, the selection embedded in the neural network and

hybrid approaches, including solutions developed by us. The advantages and

disadvantages of each approach are discussed and some possible improvements

are proposed.

Keywords: Neural Networks, Data Selection, Feature Selection, Instance Se-

lection

1. Introduction

There are three main purposes of data selection: limiting the dataset size and thus
accelerating the model learning process, removing noise from the data and thus im-
proving the model predictive capabilities and making the data interpretation easier
by humans [1, 2]. In this paper we discuss how data selection can be addressed in
neural network learning. Since datasets consists of instances and the instances con-
sist of features, the dataset size can be reduced by feature selection, instance selection
or both. Moreover, the selections can be performed as well prior to neural network

Received: 11 December 2016 / Accepted: 30 December 2016

154

learning as by the neural network itself during the learning process. Our purpose is
to show some interesting properties of data selection obtained with different feature
or different instance selection methods, propose some improvements and discuss how
to choose the optimal method.

Typically in data selection we fist obtain a little improvement of the prediction
accuracy as we remove some data and then the accuracy slightly but constantly drops
as more data is removed. Then after exceeding some limit the prediction accuracy
begins constantly dropping and if we want to go further with compression we must
choose some point depending on our preferences on the compression-accuracy plot.

Feature selection prior to model learning can be done either with filters or with
wrappers. Wrappers really wrap the learning algorithm so it is not strictly done before
the learning process but rather before deciding which will be the optimal configuration
of the final model used for prediction. For the experiments we carefully chose some
filter methods (section 2.).

Instance selection is discussed in this paper is more details than feature selec-
tion and we examine some possible improvements and parameterization of instance
selection methods (section 3.).

We tried to answer the question: what is better feature selection or instance
selection or both, and if both then how feature and instance selection influence each
other and how they should be applied together for the best results (section 4.).

Another approach is not to perform any preliminary data selection but let the
neural network select the relevant data itself. That includes selecting features (section
5.), instances (section 6.) and both of them (section 7.). That of course required us
to make some adjustments of the neural learning process and error function.

Finally we experimentally compare the discussed approaches and their results
(section 8.) and present the conclusions from this study (section 9.).

2. Feature Selection Before Network Learning

A detailed discussion of feature filters and wrappers can be easily found in literature
[3, 4]. When the expert knowledge is available it can be used to make some preliminary
feature selection [5, 6]. To select the methods we are going to use, we first performed
some preliminary experiments with different feature selection and different instance
selection methods using the RapidMiner software [7] and then we chose the methods
that were among the best in term of the balance between compression, classification
accuracy and running time.

W tested the following feature filters available in RapidMiner: Information Gain,
Information Gain Ratio, Deviation, Chi Squared, Gini Index, Uncertainty, SVM,
PCA, Correlation, Rule, Relief. We also tested three wrappers: forward selection,
backward selection and evolutionary selection. Although the backward selection wrap-
per and evolutionary selection were able to discover more informative feature subsets,
resulting in bit higher classification accuracy with the same number of features, their
execution time was between two and four orders of magnitude longer, what in the
case of the biggest data sets was totally impractical for our purposes. The results
of the filter evaluation are presented in Table 1 in terms of the average classification

155

accuracy over the 10 datasets obtained in 10-fold crossvalidation and the average rel-
ative calculation time. This was done for the number of features being the nearest
integer to 60% and 30% of the original number of features. Based on the test results,
the SVM-based filter produced the best accuracy, but for the further experiments
we chose the second filter in the accuracy ranking: Information Gain, because the
SVM-based filter was over 100 times slower.

The information gain criterion IG is defined as the difference between the entropy
before and after the optimal data split on feature f :

IGf = −
C∑

i=1

p(ci) · log(p(ci)) +

N∑

n=1

[
vn
v

C∑

i=1

p(cni) · log(p(cni))] (1)

where p(ci) is the probability that an instance belongs to class i and p(cni) is the
probability that an instance within the bin n belongs to class i, v is the number of all
instances and vn is the number of instances in bin n, C is the number of classes and
N is the number of bins. We did not use any methods that create new features (as
PCA), because that makes the data interpretation and logical rule extraction in most
cases totally impractical; the complexity of the obtained rules exceeds human capa-
bilities of making any logical conclusions, what is important in most of our practical
applications.

Table 1. Average values over the 10 datasets of classification accuracy of neural
networks for the nearest integer of 60% and 30% of features (F60-acc, F30-acc) and
execution time relative to Information Gain time with different feature filter methods
using the RapidMiner implementation.

Method F60-acc F30-acc time
no selection 92.74 92.74 0.0

Information Gain 92.12 91.02 1.0
Information Gain Ratio 92.37 89.80 1.0

Deviation 91.78 88.37 0.2
Chi Squared 91.82 90.48 0.8
Gini Index 92.07 89.52 1.1
Uncertainty 91.82 91.04 1.9

SVM 93.01 91.24 102
PCA 92.51 89.13 0.5

Correlation 89.35 87.40 0.1
Relief 93.02 88.27 245
Rule 92.15 88.44 16

3. Instance Selection Before Network Learning

Instance selection methods fall into two categories: noise filters and condensation
methods. Noise filters remove noisy instances and thus improve the classification
accuracy, but they compress the data very little. Condensation methods compress

156

the data and speed up the neural network (or any other classifier) training effectively
but usually also decrease classification accuracy [8]. Frequently stronger compression
causes stronger accuracy loss. If methods from both families are used then noise filters
should be used first.

In the experiments, we first evaluated the performance of the instance selection
algorithms implemented in the Information Selection extension for RapidMiner to
decide, which one to use. Again our criteria were similar as with feature selection: the
method should produce high compression, low accuracy loss and have short running
time.

The description of many instance selection algorithms can be found in [9, 10]. The
experimental comparison was also done in [11]. However, the authors used only small
datasets, and thus, as the general tendency is preserved between their and our study,
we obtained different results for our much larger datasets.

Also some methods of evolutionary-based instance selection were proposed in [12,
13, 14]. However, the computational time was several order of magnitude longer and
for this reason we did not take them into account, although the authors reported their
method more accurate. Another shortage of the evolutionary-based methods is that
the selection is performed without letting us understand while particular instances
are selected.

We evaluated the following instance selection algorithms using the RapidMiner
Information Selection Extension: GE, RNG, CNN, IB2, IB3, DROP-3, RHMC, MC,
ENN (which is the only noise filter on that list) and ENN. In the case of feature filters
the results were very similar while averaged over the 10 datasets and thus selecting
the proper feature filter was not so crucial. However, in the case of instance selection
algorithms the differences are really very significant and here the proper choice is
much more important.

Two of the best performing instance selection algorithms were ENN (Edited Near-
est Neighbor) followed by IB3 [?] and DROP-3 [15]. However, they did not always
provided the best accuracy (in some points ENN followed by ENN or even GE was
better) and therefore we decided to use ENN with IB3 and ENN with a modified
CNN (Condensed Nearest Neighbor).

The IB3 works in a similar ways as CNN. It takes the instances misclassified by
k-NN and then it removes from the selected set the instances, which can be removed
without the loss of classification accuracy.

DROP-3 [15] is a decremental algorithm, which first implements ENN and then
examines which instances can be removed while their neighbors are still correctly
classified without them. The examination is not in random order but staring from
the instances situated furthest from other class instances (so called ”enemies”).

The compression of ENN with IB3 and DROP-3 was two times stronger than that
obtained with ENN followed by CNN, but the accuracy was comparable. DROP-3 was
situated almost on the same point on the compression-accuracy plot as ENN followed
by IB3. Finally we decided to use first IB3 and then ENN with CNN. ENN removes
noise by removing the instances which have a different class than predicted by the
k-NN algorithm. Then CNN or IB3 removes the instances that can be eliminated
without adversely affecting classification.

One of the basic problems with the condensation algorithms such as CNN, IB3 or
the DROP family, is that there is usually no direct way to control how aggressively

157

they perform the instance elimination, unlike in feature filters, where we can select
the desire numbers of remaining features. Thus we used two approaches to overcome
the limitations: first bagging of instance selection methods [16] and in this work
modification of the rejection criterion in the algorithm itself.

Table 2. Average values over the 10 datasets of classification accuracy of neural
network, number of selected instances and execution time relative to CNN time of
instance selection process for different instance methods using the RapidMiner imple-
mentation.

Method accuracy %Instances time
no selection 92.74 100 -

GE 90.71 45 130
RNG 86.81 12 10
CNN 86.74 8.0 1.0
IB2 85.12 7.7 0.2
IB3 86.56 4.0 3.5

DROP-3 87.13 4.0 14**
MC 82-86* 3.5-20 8.0

RHMC 82-86* 3.5-20 8.1
ENN 93.17 90 1.0

ENN+CNN 87.44 7.1 2.0
ENN+IB3 87.15 3.9 4.5

ENN 93.17 90 1.0

* - MC and RHMC provide various results depending on adjustable parameters,
but for the same number of instances they always provided lower accuracy then the
four best algorithms.

** - DROP-3 was implemented as a Weka plugin, so the time comparison may not
be adequate in this case.

In the case of bagging we use the same idea as bagging in classification, but
instead of classifiers, instance selection algorithms constitute the ensemble. Then we
establish a threshold of how many instance selection algorithms from the ensemble
want to select a given instance [16]. Say, we had 10 algorithms. We decide that if
m = 5 of them want to remove a given instance then the instance will get finally
removed. But we can also use any arbitrary number for m between 1 and 10. The
higher m the less aggressive is the selection - the compression will be weaker but the
accuracy will be higher (which corresponds to a higher number of attributes kept in
feature selection).

In our tests bagging worked very well, but its drawback was higher computational
cost. Thus the other solution is to use variable m in the inner k-NN algorithms within
CNN (and ENN - although it is not so crucial). For example, we can use the number
of nearest neighbors k = 9. In the standard CNN an instance will get removed if it
has the same class as more then k/2 of its neighbors, that is m = 5 in that case. If we
increase m say to 8 then the instance will get removed if it has the same class as more
then m = 8 of its neighbors, so the selection will be less aggressive and some of the
instance situated close to class boundaries that with m = 5 would get removed will be

158

kept [17]. Again the compression will be weaker but the accuracy will be higher. This
is shown in the pseudocode, where kNN(.) is the class of at least m of k neighbors in
the k-NN algorithm and C(xi) is the real class of instance xi. In particular k and m
can be different for ENN and CNN.

Algorithm 1 The modified ENN+CNN algorithm

Input: original set T
Output: reduced set S (now empty)
for i = 1 . . . numInstances do

if C(xi) 6=kNN(k,m, (T without xi),xi) then
mark xi for removal

end if
end for
remove all marked instances from T
add randomly one instance from T to S
for i = 1 . . . numInstances inT do

if C(xj) 6=kNN(min(k, sizeOf(S)),min(m, sizeOf(S)),S,xi) then
add xi to S

end if
end for
return S

4. Joined Feature and Instance Selection Before Network Learning

Our experiments with data selection as the preprocessing step showed that feature
selection (FS) should be performed prior to instance selection (IS). We tested many
different configurations, such as FS-IS, IS-FS, FS1-IS1-FS2-IS2, FS1-IS-FS2 and oth-
ers. Also in the case of repetitive feature and instance selection we tried making the
reduction stronger at each iteration. However, comparing that to the simplest strat-
egy FS-IS, there was no significant difference on the compression-accuracy plot. Our
explanation of that phenomenon is that in most data there is a higher percentage of
irrelevant features than of noisy instances (most of the instances were removed be-
cause of their redundancy and not because of noise). Thus, we can perform efficiently
feature selection using all instances, but less efficiently instance selection using all
features. Moreover, several feature filters are based on some measure of correlation
or some variants of information gain. Removing too many instances can make them
work less efficiently. On the other hand most instance selection methods are based
on the distance between the instances. If there are irrelevant features, we get not the
optimal distance measures. A partial solution to that problem is multiplying the dis-
tance component in each feature direction by this feature importance obtained from
some feature ranking.

Some papers proposed evolutionary optimization of feature and instance selec-
tion [18, 14], but as already mentioned in section 2., we did not consider this option

159

first because of the computational complexity and second because evolutionary opti-
mization, similarly as feature construction methods (as PCA) does not enable us to
understanding why particular results were obtained.

5. Feature Selection Embedded into Network Learning

Feature selection with neural networks can be done in several ways. The two basic
approaches are by the analysis of weights, including pruning methods and by input
data perturbances [19]. In perturbance analysis we replace the values of particular
feature with random values in the test vectors and see how this influences the network
accuracy. In weight analysis we assume that the less important features will generate
smaller absolute values of weights and we can reject the features with the lower
weighted sum of weights ri (Eq. 2.). The weights can be also enforced to small
values with a regularization term. The weight analysis was used in our experiments.
A more complex method also consider the derivatives or the output neuron weights.
Due to the non-linear transfer functions the results depend on the actual position on
the transfer function and in classification task at the end of the training the position
is predominantly in the saturated area, so there must be some more effort put into
constructing an efficient solution. We used the following feature ranking measure:

ri =
N∑

n=1

|win|∑F
f=1 |wfn|

(2)

where ri is the predictive power of the i-th feature, N is the number of hidden
layer neurons, F is the numbers of features, win is the weight connecting the n-th
hidden neuron with the i-th feature and wfn (= 0...F) is the f -th weight of the n-th
hidden neuron.

The random perturbances of single feature values were not evaluated experimen-
tally, because in the experiments we were removing features (thus setting them to
zeros) before network training and that already partially corresponds to the pertur-
bance analysis.

6. Instance Selection Embedded into Network Learning

We use the MLP neural network with hyperbolic tangent transfer function and with
the number of output neurons equal to the number of classes. Most of the existing
neural network training algorithms can be used. The error for a single vector is given
by the following formula:

Error(xv) =
C∑

c=1

(yac − yec)
2 (3)

where C is the number of classes, yac is the actual value of c − th output neuron
signal and yec is the expected value of c− th output neuron signal (which is 1 if the

160

current instance class is represented by the i − th output neuron and -1 otherwise).
We assume that a vector is classified correctly if the neuron associated with its class
gives a higher signal than any other output neuron.

If an instance is classified incorrectly, the error the network gives as a response
to that instance is high. If an instance is classified correctly and is situated far
from a class boundary, the error obtained for that instance is very low (due to the
hyperbolic tangent transfer function shape). Thus we can remove the instances with
the highest error (greater than maxError), as they are outliers and these with the
lowest errors (lower that minError), as they do not help to determine the proper
decision boundary [20]. By adjusting the two parameters maxError and minError
we can regulate the compression level. That however cannot be done from the very
beginning of the network training, because at that stage the network produces more
or less random errors for each instance, as the learning starts with random weights.
As the training progresses, we can gradually decrease maxError, starting from its
maximal possible value (4C, assuming MSE error measure). minError does not
require gradual increasing but can be set at the end of network learning. maxError
improves mostly accuracy and compression very little [20]. We set maxError = 1.6+
0.16 ·numberOfClasses. The influence of minError values on the data compression
and accuracy together with feature selection is experimentally evaluated in section 8.

7. Joined Feature and Instance Selection Embedded into Network Learn-
ing

To determine the optimal order of joined feature and instance selection with neural
networks, we conducted experiments trying feature selection first, instance selection
first and simultaneous feature and instance selection. As in the case of the selection
prior to network learning, the results confirmed that the best option is to perform
feature selection first and then instance selection. Thus the network training consists
of three parts: 1. standard network training, 2. removal of irrelevant features, 3.
removal of irrelevant instances. After the second step the training can either continue
or it can be restarted from random weights. Better results were obtained with the
restart.

We observed in the experiments that instance selection embedded in neural net-
work worked well, but feature selection was in some cases as good as done with feature
filters and in some cases less effective. For that reason we added another option for
feature selection. First we build a simple neural network with three hidden units and
train this network separately on each feature. We use early stopping, so that we can
measure the classification accuracy on a training set, without the need of crossvali-
dation. Then we sort the features by the classification accuracy. Then we add the
features to the reduced dataset starting from the most informative one. However,
before we add the next one, we calculate its correlation with all the already added
feature. If the correlation with at least one of them is higher than the threshold, we
reject this feature. This appeared to be the most accurate option.

161

8. Experimental Evaluation

The purpose of the experiments was to evaluate particular methods in terms of classifi-
cation accuracy and data compression and determine the Pareto-line for each method.
The Pareto-line is a line in the compression-accuracy coordinates, shown in Fig. 1
that connects the points with the best compression for a given accuracy and best
accuracy for a given compression, so that no other points exist that can improve
both. The compression is defined as percentage of remaining features multiplied by
percentage of remaining instances (lower value is better).

In the experiments we used RapidMiner for feature selection and some of the
instance selection before the network training. All the other experiments, especially
data selection embedded into neural network were performed in our own program. All
the software we used can be downloaded from our web page at www.kordos.com/tfml2017.

We trained the networks with the R-prop algorithm. We used networks with one
hidden layer. The numbers of neurons in the hidden layer was equal to the geometric
mean of the number of inputs and number of classes. We performed the experiments
on 10 classification datasets from the Keel Repository [21]: Ionosphere (351,33,2),
Image Segmentation (210, 18, 7), Magic (19020, 20, 2), Thyroid (7200, 21, 3), Page-
blocks (5472, 10, 5), Shuttle (57999, 9, 7), Sonar (208, 60, 2), Satellite Image (6435,
36, 6), Penbased (10992, 16, 10), Ring (7400, 20, 2). The numbers in the brackets are:
number of instances, number of features, number of classes. All the experiments were
performed in 10-fold crossvalidation and repeated 10 times. The purpose of repeating
the experiments 10 times was to average over the initial random network weights and
thus to ensure more stable and reliable results.

Table 3. Average values over the 10 datasets of classification accuracy of neural
networks (F100-A, F60-A, F30-A) and number of selected instances (F100-I, F60-
I, F30-I) for respectively 100%, 60% and 30% of features with three data selection
methods (the real numbers of features were the nearest integers to these percentages).

Method IS F100-A F100-I F60-A F60-I F30-A F30-I
FS: Inf. Gain no selection 92.74 100 92.12 100 91.02 100

IS: ENN+CNN m=8, k=9 93.01 35.22 92.30 29.11 91.03 27.81
with variable m=7, k=9 92.65 18.91 91.58 16.15 88.76 15.11
m in k-NN m=5, k=9 87.44 7.11 87.11 5.89 87.72 6.41

IS: ENN+IB3 ENN+IB3 87.15 3.85 86.88 3.98 87.01 4.95
FS in separate no selection 92.74 100 92.90 100 91.45 100

network minE=0.03 93.02 38.45 92.30 32.98 91.23 36.40
IS embedded minE=0.1 92.64 19.98 91.91 22.12 88.76 26.78

into NN minE=0.3 89.05 7.11 88.23 5.89 88.25 10.23
FS embedded no selection 92.74 100 92.12 100 88.34 100

into NN minE=0.03 93.02 8.45 92.15 33.15 88.94 38.14
IS embedded minE=0.1 92.61 19.98 91.05 24.98 87.02 14.18

into NN minE=0.3 89.05 7.11 87.91 9.15 86.15 10.78

The standard deviations were between 0.5 for the largest to 3.0 for the smallest
datasets. The T-test confirmed that the differences in Table 3. are statistically

162

significant. (For example for the accuracies of 90.00 and 91.00 with 100 cases, the
p-value of 0.05 is obtained with standard deviation of 3.585.)

Figure 1. Compression (percentage of remaining features times percentage of re-
maining instances) vs classification accuracy. The compression axis is in logarithmic
scale. A Pareto line is shown separately for each method (square = FS: Inf. Gain,
IS: Mod. ENN+CNN, cross = FS in sep. network, IS embedded, circle = FS and IS
embedded, triangle: FS: Inf. Gain, IS: ENN+IB3).

9. Conclusions

For the biggest data sets we were able to remove about 98-99% of instances without
noticeably accuracy loss, but for smaller datasets the reduction was much weaker.

The most effective data selection is performed by feature selection followed by
instance selection. This is true as well as for the selection prior to network training
as embedded into the neural network. Currently the Pareto line for the selection with
information gain and ENN+IB3 and then modified ENN+CNN is situated closest to
the right lower corner, so this method looks the better. However, each of the methods
have some strengths.

Feature ranking obtained by learning a simple neural network on a single features
with removal of highly correlated features worked very well. The standard feature
rankings, as information gain, were on the second place, while feature selection by
neural network weight analysis on the third place. However, the last methods can be
further enhanced by considering the data flow through the entire network, not only

163

the input to hidden weights and thus may produce better results, which will the topic
of a further study.

Embedding noise reduction into the neural network learning process gives usually
very good results. That can be attributed to the shape of decision boundaries, where
the k-NN algorithm have the tendencies to smooth the edges.

Instance selection as noise removal works quite well in each case. There is however
one problem with instance selection as data compression. Both DROP-3 and the
instance selection based on the network error overcomes the shortage of CNN that
it works in a random order, as they both preserve more of the instances situated
close to class boundaries. However, both of the methods rely on the distance to
the opposite class measured either directly (CNN, IB3 and the DROP family) or by
the instance location reflected by error produced by the hyperbolic tangent function
transformation. But both of the approached do not consider the fact, that the distance
between opposite class instances maybe different in different areas of the input spaces
and thus sometimes tend to remove rather the instances closest to the boundary,
even if they are hidden between the ”first row” of instances then the instances that
are further, but in the first row and thus needed to preserve the boundary. That is
considered by other instance selection methods, which examine the classes of neighbor
instances of Voronoi cells, but in spite of that they do net perform better. Finding
an effective solution to this problem is still open.

It is likely that the results can be further improved if the variable m in the k-
NN algorithms is used also with IB3 and DROP-3 algorithms, which have better
compression than CNN with comparable accuracy. That will be another topic of our
future research.

10. References

[1] Kordos, M., Blachnik, M., Bialka, S., Instance selection in logical rule extraction
for regression problems. Lecture Notes in Artificial Intelligence, 2013, 7895, pp.
167–175.

[2] Blachnik, M., Kordos, M., Simplifying SVM with weighted LVQ algorithm. Lec-
ture Notes in Computer Science, 2011, 6936, pp. 212–219.

[3] Liu, H., Computational Methods of Feature Selection. Chapman and Hall, 2007.

[4] Stanczyk, U., Jain, L.C., Feature Selection for Data and Pattern Recognition.
Springer, 2015.

[5] Uribe, C., Isaza, C., Expert knowledge-guided feature selection for data-based
industrial process monitoring. Rev. Fac. Ing. Univ. Antioquia, 2012, 65, pp.
112–125.

[6] Kordos, M., Cwiok, A., A new approach to neural network based stock trading
strategy. Lecture Notes in Computer Science, 2011, 6936, pp. 429–436.

164

[7] Hofmann, M., Klinkenberg, R., RapidMiner: Data Mining Use Cases and Busi-
ness Analytics Applications. Chapman and Hall/CRC, 2016.

[8] Sun, X., Chan, P.K., An analysis of instance selection for neural networks to
improve training speed. International Conference on Machine Learning and Ap-
plications, 2014, pp. 288–293.

[9] Garcia, S., Derrac, J., Cano, J.R., Herrera, F., Prototype selection for nearest
neighbor classification: Taxonomy and empirical study. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2012, 34, pp. 417–435.

[10] Olvera-Lapez, J.A., Carrasco-Ochoa, J.A., Martin, J.F., Kittler, J., A review of
instance selection methods. Artificial Intelligence Review, 2010, 34, pp. 133–143.

[11] Grochowski, M., Jankowski, N., Comparison of instance selection algorithms.
Lecture Notes in Computer Science, 2004, 3070, pp. 580–585.

[12] Antonelli, M., Ducange, P., Marcelloni, F., Genetic training instance selection
in multiobjective evolutionary fuzzy systems: A coevolutionary approach. IEEE
Transactions on Fuzzy Systems, 2012, 20, pp. 276–290.

[13] Anwar, I.M., Salama, K.M., Abdelbar, A.F., Instance selection with ant colony
optimization. Procedia Computer Science, 2015, 53, pp. 248–256.

[14] Derrac, J., Cornelis, C., Garcia, S., Herrera, F., Enhancing evolutionary instance
selection algorithms by means of fuzzy rough set based feature selection. Informa-
tion Sciences, 2012, 186(73–92).

[15] Wilson, D.R., Martinez, T.R., Reduction techniques for instance-based learning
algorithms. Machine Learning, 2000, 38, pp. 257–286.

[16] Blachnik, M., Kordos, M., Bagging of instance selection algorithms. Lecture
Notes in Computer Science, 2014, 8468, pp. 40–51.

[17] Kordos, M., Instance selection optimization for neural network training. Lecture
Notes in Artificial Intelligence, 2016, 9692, pp. 610–620.

[18] Tsaia, C.F., Eberleb, W., Chu, C.Y., Genetic algorithms in feature and instance
selection. Knowledge-Based Systems, 2013, 39, pp. 240–247.

[19] Leray, P., Gallinari, P., Feature selection with neural networks. Behaviormetrika,
1999, 26, pp. 145–166.

[20] Rusiecki, A., Kordos, M., Kaminski, T., Gren, K., Training neural networks on
noisy data. Lecture Notes in Artificial Intelligence, 2014, 8467, pp. 131–142.

[21] Alcala-Fdez, J., et al., Keel data-mining software tool: Data set
repository, integration of algorithms and experimental analysis framework.
http://sci2s.ugr.es/keel/datasets.php, Journal of Multiple-Valued Logic and Soft
Computing, 2011, 17, pp. 255–287.

