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Abstract. Performing instance selection prior to the classifier training is always
beneficial in terms of computational complexity reduction of the classifier train-
ing and sometimes also beneficial in terms of improving prediction accuracy.
Removing the noisy instances improves the prediction accuracy and removing
redundant and irrelevant instances does not negatively effect it. However, in prac-
tice the instance selection methods usually also remove some instances, which
should not be removed from the training dataset, what results in decreasing the
prediction accuracy. We discuss two methods to deal with the problem. The first
method is the parameterization of instance selection algorithms, which allows to
choose how aggressively the instances are removed and the second one is to em-
bed the instance selection directly into the prediction model, which in our case is
an MLP neural network.

1 Introduction

There are two purposes of instance selection: to decrease noise in the data and to reduce
the data size. One of the most popular instance selection methods for noise filtering is
ENN (Editted Nearest Neighbor) [21] and for data size reduction is CNN (Condensed
Nearest Neighbor) [9]. Although ENN and CNN as single methods are quite simple
and there exists methods that perform better both in terms of noise filtering and data
compression, when they are applied sequentially ENN followed by CNN they pro-
duce exceptionally good results. First ENN removes noise, this is the instances that
are wrongly classified by k-NN. Then CNN removes redundant instances in the follow-
ing way: first it selects one instance and then if the next instance is correctly classified
by k-NN using the already selected instances as the training set, it is considered redun-
dant and not selected. If classified incorrectly it is added to the selected instances. Then
the process repeats with each remaining instance. The ENN and CNN algorithms are
well described in the literature [21],[9] and in [18], [17] and [12] the interesting reader
can find a detailed comparative study of many instance selection methods.

The standard instance selection methods are rather filters than wrappers and thus
have no real-time adjustment to the classifier performance. In practice there are two
problems: some of the instances that should be selected do not get selected and some of
the instances that should not be selected get selected. That is because ENN and CNN
consider only the local neighborhood of each instance and do not take into account how
the classification model works. What it means in practice is that there is no guarantee
that the set of selected instances will be the optimal one for a given classifier.



Recently there have been several approaches to improve instance selection meth-
ods by addressing some of their shortages. In [2] Antoneli et al. presented a genetic
approach using a multiobjective evolutionary algorithms for instance selection. In [8]
Guillen et al. presented the use of mutual information for instance selection. Their
proposition was based on a similar principles as the k-NN based instance selection,
but after finding the nearest neighbors of a given example instead of using k-NN to pre-
dict its output value, the mutual information (MI) between that example and each of its
neighbors was determined. In the next step the loss of mutual information with respect
to the neighbors was calculated. If the loss was similar to the example neighbors then
this example was selected to the final dataset. The method was experimentally evaluated
on artificially generated data with one and two input features. Then in [19] the idea was
extended to instance selection in time series prediction.

In [16] a class conditional instance selection (CCIS) was presented. CCIS creates
two graphs: one for the nearest neighbors of the same class and one for other class
instances than the current example. Next a scoring function, which is based on the dis-
tances in graphs, is used to determine the selected instances. In [3] the authors proposed
to use ant colony optimization with one classification model used in the instance selec-
tion process and another model as the final predictor. In [1] the authors analyzed how
instance and feature selection influence neural network performance. In [4] a method to
reduce the number of support vectors in SVM training was considered.

From our perspective, very interesting ideas were presented in [20]. The authors
designed an instance selection method that took into account the decision boundaries
of neural networks like distance from decision boundary, dense regions and class dis-
tributions and they proposed an instance selection method adjusted to neural network
properties. Their method consisted of two parts: removing far instances and removing
dense instances. In the far part they calculated the distance between each instance and
the closest instance of the opposite class (the far distance) and removed the instances for
which the distance was farther then the average + standard deviation of the far distances.
In the dense part they calculated the distance between each instance and the closest in-
stance of the same class (the dense distance) and iteratively removed the instances for
which the distance was closer then the average of the dense distances, starting from
those with the smallest dense distance and updating the average dense distance at every
iteration.

We discuss two methods to deal with the problem. The first method is the param-
eterization of instance selection algorithms, which allows to choose how aggressively
they remove the instances and the second one is to embed the instance selection di-
rectly into the prediction model, which in our case is an MLP neural network. To use
the MLP neural network for an on-line instance selection no adjustments are required to
the error function, neuron transfer functions, to the learning algorithm or to the network
architecture.

2 Instance Selection Prior To Neural Network Training

The common problem with instance selection performed before classification is reduc-
tion of the classification accuracy. That is true not only for ENN and CNN but also



for many other instance selection methods. That may be not of a great concern if the
purpose is primary to reduce the dataset size and the accuracy reduction is very little.
However, frequently the objective is to obtain high accuracy at the first place and then
the possible data size reduction.

As the instance selection method we use a modified ENN (Editted Nearest Neigh-
bor) followed by a modified CNN [9]. The choice of the instance selection algorithms
is dictated by their simplicity and by the fact that when whey are both applied in this
order, they perform exceptionally well. First ENN removes noise, then CNN removes
redundant instances. k-NN can be used as the final prediction algorithm and as the in-
ternal CNN and ENN algorithm. In both cases it works best with an optimal & value,
which according to our experiments for a broad range of problems can be set to k=9
and moreover this algorithm is not very sensitive to little changes of k. For that reason
in all the experiments we will keep k=9 (at the beginning of CNN, when the number
of selected instances is fewer than 9 we use all the already selected instances as the
neighbors).

However, to address the above mentioned problem we must make some modifica-
tions to ENN: we will require that in order for an instance to be rejected by ENN, it must
have different class than more as m=5 of its neighbors, which will cause only more out-
lying instances to be removed. If we want to reject even more outlying instances, we
can rise the requirement to m=7 neighbors of a different class or even 8 or all 9 (which
will be the weakest instance selection, preserving most instances in the selected set).

In a similar way, we can apply modifications to CNN to require a different num-
bers of the instance neighbors to belong to the same class to reject the instance. The
more instances of the same class are required the weaker the selection is, resulting in
rejecting only the instances situated far from the decision boundaries (and thus very
few or none of their neighbors belong to a different class). That is exactly why we need
to perform noise reduction first. If some noisy instances, this is instances of a differ-
ent class surrounded by the current class instances, are still present, they would not
allow us to successfully remove the redundant data points, especially when we rise the
requirements for the number of the same class neighbors.

All possible values of m=5, 6, 7, 8 and 9 for ENN and CNN lead to 25 different
combinations. Since there is no place in the paper to show the results of all 25 combi-
nations, we selected four of them in such a way that m for ENN (m.,,,) equals m for
CNN (m¢ny) and both m increase from 5 to 8. We found these four combinations to be
most representative, well reflecting the general trend and the easiest to interpret.

The modified ENN+CNN algorithm pseudo-code is presented in Algorithm 1, where
T is the original training set, P is an intermediary set, which is an output in ENN
and input to CNN and S is the selected training set. C(x;) is the class of a at least
mpeNN Of monn nearest neighbors of the instance x; reduced to two-class problem:
the same class vs. different class, C'(x;) is the class of the instance z;, k is the & in k-
NN. S + S U x; means that the vector x; is added to the set S and P + P \ x; means
that vector x; is removed from the set P. ky and mq are used to set k and m¢cyn to
smaller values when the number of already selected instanced in the new training set is
less than 9.



Algorithm 1 The modified ENN+CNN algorithm
Require: T, k, menn,mcNN
n <« |T
P« T,
fori=1...ndo
C(XZ) :kNN(k:7 MENN, (T \ Xi), Xi);
if C(Xl) ;é C’(xl) then
P«P \ X;
end if
end for
S «— empty;
S« SUxy;
flag <+ true
while flag do
flag <+ false
n < |P|
fori=1...ndo
ko = min(k, sizeof(S))
mo =mcnn - ko/k
C(XZ) :kNN(k(), mo, S7 Xi)
if é(Xl) # C(Xl) then
S+~ Su Xis
P+ P \ X
flag < true
end if
end for
end while
return S

s

3 Instance Selection Embedded in Neural Network Training

It seems reasonable to embed instance selection in the classifier learning process. One
advantage is solving the problem of different decision borders of k-NN and a neural
network. Another advantage is that in some cases the instance can be not removed
totally, but be treated differently in the model learning - as the less liable example and
thus less contributing to the model parameters. Still another advantage is the possibility
of assessing during the network training how the selection influences the results and
adjust the selection accordingly. The drawback of this approach may be in some cases
higher computational complexity of the classification process than the joint complexity
of the prior instance selection followed by learning the classifier on the reduced set.
This is especially evident for large datasets, where k-NN can be efficiently accelerated
by methods like k-means clustering and then searching for the nearest neighbors only
within one cluster, KD-Tree [5] or Local Sensitive Hashing [11].

We use an MLP neural network with hyperbolic tangent transfer function and we
have as many neurons in the output layer as the number of classes. Most of the existing



neural network training algorithms can be used. When a vector is given to the trained
network inputs, the output neuron associated with this vector class gives signal = 1 and
all the other output vectors associated with different classes give the output signal = -1.
The error for a single vector x; used for instance selection is given by the following
formula:

n
Error(x;) = > (Yai — Yei)? (1
i=1

Where n is the number of classes, which equals the number of output layer neurons,
Yai 18 the actual value of ¢ — th output neuron signal and y; is the expected value of
1 — th output neuron signal (which is 1 if the current instance class is represented by the
1 — th output neuron and O otherwise) . We assume that a vector is classified correctly if
the neuron associated with its class gives a higher signal than any other output neuron.
If an instance of the training set is classified incorrectly by a trained neural network,
the error that the network gives as a response to that instance is high (Error(x;) >
maz Error). On the other hand if an instance is classified correctly and is situated far
from a classification boundary (because of the hyperbolic tangent transfer function), the
network error obtained for that instance will be very low (Error(x;) < minError).
Thus a solution is to remove from training set T the instances that produce very high
and very low errors. The pseudo-code for the embedded instance selection is shown in

Algorithm 2.

Algorithm 2 Instance selection embedded in neural network training
Require: T, minError, maxError
n <« |T|;
train the network on T
fori=1...ndo
if Error(x;) > maxError or Error(x;) < minError then
T+ T \ X;
end if
end for
if restart = true then
retrain the network on T from random weights
else
continue training the network on T from the current weights
end if

There are several parameters in this instance selection. The first two parameters
are the max Error and the minError. The next one is the time point in the network
training, when the errors should be calculated and the instances rejected. And the final
one is what to do after the instances get removed: train the network further from the
current point or start the training anew. For max Error we use a value be greater than
1 and smaller than 2 due to the shape of hyperbolic tangent for two class problems, but
for multiply classes it may be set to higher values.
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Fig. 1. Left: MLP neural network decision border with min Error and M ax Eror shown for the
class for which an expected neuron signal is -1. Right: Examples of decision borders that make
some instances to be incorrectly classified by k-NN.
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Fig. 2. The instances of Iris dataset selected by CNN (dot inside circle), by neural network (cross)
as those with low error values and by both (big solid circle). Neural network selected instances
more correctly at the border of red and green class and of blue class, only failed to select border
instances of the green class from the blue class side.



The rationale behind using the max Error and not simply rejecting all misclassified
instances, is that the instances that are situated close to the decision boundaries maybe
frequently misclassified, although it is rather due to the neural network properties than
due to the instances being noisy. However, if a single instance of one class is in the
middle of different class instances then it is surely noise and the error value produced
by the network for such an instance will be higher then for the misclassified border
instances. However, the minError depends more on the neuron weights values and
thus a better solution than using a constant value is to use a relative value in relation to
the error the network makes on other examples. We use for min Error some percentage
of the average error values of all correctly classified instances of a given class. In the
experiments we use four different values of max Error and minError

While removing irrelevant examples as those, on which the neural network makes
the least error, the examples that get removed are those far from the decision border,
so those that are not necessary to determine the decision border and thus the decision
border remains intact. But while removing them with CNN we have no guarantee that
only the irrelevant ones will get removed, because that may depend on the order of the
instances being considered. Let us illustrate this in Fig. 2.

In the case of noise reduction also different examples may get removed by ENN and
the neural-network embedded noise reduction, however in this case the difference is not
so dramatic, but rather determined by the decision boundary shape of particular learning
algorithms. In k-NN, which is the baseline algorithm for ENN mostly the edges get
smoothed and narrow stripes get removed (see Fig. 1. right). Neural networks are able to
accommodate more complex decision boundaries and particularly if the neuron weights
have enough big values and the problems shown in Fig. 1. right can be eliminated,
although on the other had it may lead to over-fitting if there are many neurons and large
weight values. To overcome this weight pruning methods can be used.

4 Experimental Evaluation

We conducted the experiments with several datasets from the UCI Machine Learning
Repository [6]. The datasets were selected to cover different levels of noise, of leaning
difficulties (the neural network could achieve the prediction accuracy from 0.6 to 1.0
depending on the dataset) and different number of classes. In this way the approach
can be tested for various types of problems. The following dataset were used: Banknote
Authentication (4 features, 1372 instances, 2 classes), Climate Simulation Crashes (4
features, 1372 instances, 2 classes), Image Segmentation (19 features, 2310 instances,
7 classes), Satellite Image (36 features, 6435 instances, 7 classes), Vehicle (18 features,
846 instances, 4 classes) and Yeast (8 features, 1484 instances, 10 classes).

We implemented the algorithms in C# language. As the network learning algorithms
we use VSS [13], which uses a search-based approach for finding the optimal path
downwards the error surface [14]. The software can be downloaded from [7]. Also
some tests were performed in RapidMiner [10]. We run each test in five 10-fold cross-
validations (50 runs together). Fig. 3 shows the diagram representing the experimental
setup, where k=9 the values m for ENN and CNN are the same and change from 5 to 8.
The same setup is used for neural network based instance selection and in this case the



ENN and CNN blocks are not used. In this case the instance selection was performed at
the final stage of the network learning. Then the network learning was either restarted
(res in tables 1 and 2) from random weights or the network trained further "incremen-
tally" (inc in tables 1 and 2) from the point where the selection was done - in both cases
using the selected instances only.

— 10-fold crossvalidation
load .
dataset > — training ————————— — test

| ENN selection (k,m) |

{} neural

|CNN selection (k,m) | network

{} test

neural network
training

results

accuracy
N. instances

Fig. 3. Processes used to evaluate and validate dataset assessment based on compression. Either
ENN and CNN blocks are used or the instance selection embedded in a neural network training.

Table 1. Classification accuracy

method/dataset  |Banknote|Climate|ImgSegm|Satlmage|Vehicle|Yeast
no selection 99.5 95.1 96.4 90.6 81.6 |60.0
ENN-CNN 5/9 97.5 94.0 92.3 86.5 81.7 |55.7
ENN-CNN 6/9 98.2 943 94.6 87.8 82.0 |55.9
ENN-CNN 7/9 99.8 95.1 95.7 90.2 78.4 |56.2
ENN-CNN 8/9 98.2 94.5 96.6 89.8 80.3 [59.0
NN-inc 0.02/1.7 99.4 94.0 94.8 89.3 76.1 |59.3
NN-inc 0.05/1.6 99.8 92.2 87.3 91.0 772 552
NN-inc 0.10/1.5 - 90.8 81.6 91.6 78.1 -
NN-inc 0.20/1.4 - 87.0 70.3 90.2 73.4 -
NN-res 0.02/1.7 99.8 96.2 94.8 92.3 81.1 |59.0
NN-res 0.05/1.6 99.8 96.0 94.3 924 80.6 |56.5

NN-res 0.10/1.5 - 94.8 93.6 91.6 78.1 -
NN-res 0.20/1.4 - 934 80.1 91.3 81.4 -
ENN-CNN std. dev.| 1.3 2.3 1.2 1.9 2.8 |35

NN std. dev. 1.6 4.0 44 2.0 35 | 45

The standard deviations of accuracy were relatively constant for each dataset and
instance selection parameters, so they are reported once in the bottom row of tables 1



Table 2. Ratio of selected instances to all instances

method/dataset |Banknote|Climate|ImgSegm|SatImage|Vehicle| Yeast

no selection 100 100 100 100 100 | 100
ENN-CNN 5/9 3.03 2.80 12.0 104 20.7 [17.2
ENN-CNN 6/9 3.91 9.18 19.0 11.9 404 |22.0

ENN-CNN 7/9 5.10 18.5 272 18.0 403 259
ENN-CNN 8/9 7.22 329 35.6 353 62.4 |38.4

NN 0.02/1.7 22.1 11.6 14.8 88.2 77.1 |33.3
NN 0.05/1.6 17.8 7.96 9.75 63.7 53.0 (242
NN 0.10/1.5 - 5.64 7.17 41.7 42.6 -
NN 0.20/1.4 - 2.53 4.37 28.1 34.5 -
ENN-CNN std. dev.| 1.6 1.5 0.6 1.8 09 | 4.0
NN std. dev. 1.6 0.6 0.6 1.9 1.5 | 45

and 2 as the average standard deviation of the 50 runs (five 10-fold crossvalidations) of
each set of instance selection parameters. In ENN+CNN selection the first value is m
(here m = mgyNy = mcenn) and the second k. For neural network based selection
the first value is minError and the second is max Error. maz Error is presented in
absolute values and minError in the fraction of the average error value.

5 Conclusions

It was in several cases possible to obtain higher classification accuracy than without in-
stance selection using about 20-30% of the training vectors and always to significantly
reduce the dataset size with only a very little accuracy drop - much less then caused by
ENN+CNN with standard parameters. However, other experiments showed that ENN
with default parameters is very good at removing noise artificially added to the training
dataset and thus improving results on such data. However, in the case of the datasets
used here, ENN seems to perform too strong instance selection and in particular it re-
moves too many instances situated close to decision boundaries, what shift the decision
boundaries causing decrease in the classifier performance. Increasing the required m
we can get removed only the instances situated inside other class and thus only noise
is removed and the decision borders are left intact. ENN selection does not have much
impact on the data size reduction. In the experiments ENN usually reduced the data size
about 5% and CNN up to 85%. Also standard CNN selection tends to shift the decision
boundaries due to the removal of the instances situated close to the boundaries. And
again increasing m from the default 5 to 7 or to 8 helped, but the total number of se-
lected instances at least doubled. However, if decreasing the dataset size is as important
as accuracy improvement, the position of the class boundary can be determined first,
and then more aggressive elimination can be performed for the instances that are far
from the boundary and less aggressive to those that are close. Some of the ideas (the
"far" instances) presented in the introduction that were proposed in [20] may be useful.
Another good idea is to embed instance selection in the classifier, as was discussed in
the paper.



Instance selection performed during the neural network training usually allowed for
achieving higher classification accuracies with a comparable number of instances. Thus
for the size of datasets presented here it seems to bo a good solution. On the other hand,
the time of the whole process was significantly longer. It was about 3-4 times faster
to perform instance selection first and then to train the network only on about 20% of
selected instances. With the increase of the dataset size usually higher percentage of
instances can be rejected thus making the difference even bigger. The Yeast dataset is
an especially difficult problem with many classes and probably with high noise level. In
that case also the max E'rror parameter did not work as expected. That was, because the
network error exceeded the value of 2 for many vectors and probably the maxz Error
should be set to a higher value for such datasets. However, how to determine the optimal
value in such cases requires further investigations. The minError already realized
the "far" instances idea and it worked quite well. In general a similar solution is used
in Support Vector Machines, where vectors that are close to the decision border are
of special consideration. In some cases, when one vector is removed as being below
the minError, another vector that is left in its proximity should be counted with an
increased coefficient while calculating the network error in order to prevent shifting of
decision borders.

In summary we were able to improve the neural network classifier performance
and to observe several interesting properties of the instance selection process. A further
research examining all the parameters individually on a large number of datasets is
probably going to help develop more effective methods.
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