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Abstract – The idea presented in this paper is to gradually
decrease the influence of selected training vectors on the
model: if there is a higher probability that a given vector
is an outlier, its influence on training the model should be
limited. This approach can be used in two ways: in the
input space (e.g. with such methods as k-NN for prediction
and for instance selection) and in the output space (e.g.
while calculating the error of an MLP neural network).
The strong point of this gradual influence reduction is that
it is not required to set a crisp outlier definition (outliers are
difficult to be optimally defined). Moreover, according to the
presented experimental results, this approach outperforms
other methods while learning the model representation from
noisy data.

Keywords – noise reduction; instance selection; neural
networks

I. INTRODUCTION

The quality of prediction is limited by the quality
of the data. Thus an important step in the data mining
process should be noise reduction. The noise in the data
can be generated by several factors, as imprecise or
erroneousness data. The simplest solution would be to
reject the wrong vectors with some instance selection
method. However, that is in practice usually not the best
approach for two reasons: first it would require setting
a crisp rejection criteria, and second even the imprecise
data contains some valuable information. Thus, here we
discuss two other solutions. The first one is to softly limit
the influence of the outlying points on the model: the
more the point is suspected to be an outlier, the weakest
is its participation in building the final model. The second
solution is to correct the outlying points [11], but this
requires some more knowledge, frequently the domain-
specific knowledge and is not possible in every situation.
That approach can also be used for increasing the data
set size in cases when too few training examples could
lead to model over-fitting - using interpolation we can

generate additional data points. Another method to deal
with over-fitting is the use of ensembles. Ensembles can
reduce the variation without increasing the bias in the
prediction and can allow for obtaining higher prediction
accuracy than any single model [13]. Nevertheless, there
are two issues with ensembles: they introduce additional
complexity of the model (what may or may not be a
disadvantage - depending on a given situation). And
second, using ensembles in most cases prevents us from
extracting comprehensive logical rules from the model
(e.g. by analyzing the weights in the neural network),
although some attempts have been made recently. In this
paper we focus on regression tasks, because there is more
research on noise reduction in classification tasks [5] and
there were quite a few attempts dealing with regression.

II. INSTANCE SELECTION IN REGRESSION TASKS

There were a few attempts to reduce the influence of
noise on the model in regression tasks [1], [7], [15],
[19]. In this section we briefly review the most promising
methods for regression problems, starting from noise
reduction at the input and then discussing noise reduction
at the output of the model (in this case namely the MLP
neural network).

The first instance selection methods to reduce noise in
classification problems - ENN (Edited Nearest Neighbor),
was proposed by Wilson [21] and recently we have
proposed the RegENN - an extension of this method to
regression tasks [1].

Also other, more complex algorithms were developed,
such as Drop1-5 [22], IB3, Gabriel Editing (GE) and
Relative Neighborhood Graph Editing (RNGE), Itera-
tive Case Filtering (ICF), ENRBF2, ELH, ELGrow and
Explore [2]. A large survey including many different
algorithms of instance selection for classification tasks can
be found in [18] and [9].

In instance selection for classification problems, the
decision about instance acceptance or rejection is very978-1-4799-8322-3/15/$31.00 c© 2015 IEEE
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simple. It is based on the classification results obtained
usually with the k-NN algorithm. The instance can belong
either to the same or to a different class as the majority
of its neighbors. Comparison of the predicted class and
the real class of the instance determines the decision on
its acceptance/rejection. In the case of noise filters, the
instances are rejected if the classes do not agree, because
it indicates that the instance is an outlier.

In the RegENN pseudo-code (Algorithm 1) T is the
training dataset, P is the set of selected instances, xi is
the i-th vector, m is the number of vectors in the dataset.
Y (xi) is the real output value of vector xi, Ȳ (xi) is
the output predicted by k-NN. S is the set of k nearest
neighbors of vector xi, Model is in our case the MLP
network, but it can be any model used for the final
prediction. The k-NN algorithm is used to determine the
subset S of k closest neighbors to xi. Θ is the rejection
threshold (it will be explained in detail later) and α is a
certain coefficient, in our case α=5. std (Y (XS)) is the
standard deviation of the outputs of the vectors in S.

III. ATTRIBUTE WEIGHTING

The first step of our data preprocessing is standard-
ization and all the processes described in this paper
are performed on standardized data. That allows for not
dealing with the scaling problems (e.g. for replacing
correlation by covariance) and for easy result comparison.
We propose to use the weighting scheme for attribute,
distance, density and instance weighting, based on the
exponential function. The final weight w of each point
contribution in the k-NN used for instance selection,
can be imagined as multiplication of the four weights.
Although the weights are not literally multiplied, but more
complex operations are performed, which, however, can
be conceptually understood in this way (Eq. 1).

w = wattr · wdist · wdens · wout (1)

When we use an MLP neural network as the inner
instance selection algorithm [1], the network requires only

the density and instance weighting. However, additional
attribute and distance weighting allowed us to achieve
with k-NN the performance of an MLP network, while
making the whole instance selection process simpler.

The simplest version of attribute weighting is feature
selection, where the features that do not improve pre-
diction are rejected from the feature set. However, the
experiments conducted by several authors indicated that
a better results can be obtained by feature weighting
[20], where the more important features are assigned
larger weights. Therefore we use the standard technique
of attribute weighting by their correlation with the output.
The j-th attribute weight wj equals to that attribute
correlation or covariance for standardized data with the
output (Eq. 2):

wj =
1

N − 1

N∑
i=1

(xij − xj)(yi − y) (2)

Thus wj it is the covariance between the attribute xj
and the output value y transposed by the k-NN decay
function (see Fig. 1), where N is the number of instances
(N equals either the number of instances in the data set
or N = k if applied locally to the k nearest neighbors)
and b is a coefficient (we use b = 0.5).

Another issue is that the globally optimal set of feature
weights may be different than the locally optimal set of
weights within the k nearest neighbors of a given point.
The first set can be used to determine the k nearest
neighbors and the second set to predict the value of the
point of interest. Though it is possible to generate such
artificial data that the two sets of weights will be so
different that this approach will be unstable, we did not
observe significant differences between the two sets of
attribute weights on real world datasets.

Then the weights are used to calculate the distance d1
between two vectors x1 and x2 (Eq. 3):

d1(x1, x2) =

 1∑F
j=1 wj

F∑
j=1

wj(x1j − x2j)
p

 1
p

(3)

where F is the number of features and p is the exponent
in the Minkovsky distance measure. In the experiments
we used p = 2.

IV. DISTANCE WEIGHTING

The results obtained with k-NN significantly depend
and the value of k and on the weighting scheme [12].
The idea of distance weighting in k-NN is not new and
several approaches have already been proposed [6]. We
perform distance weighting using the same k-NN decay
function (Eq. 4):

d2(x1, x2) = Exp
(
−b(d1(x1, x2))2

)
(4)



V. DENSITY WEIGHTING

Density weighting is specific to instance selection in
regression tasks and it has neither application to k-NN
based prediction nor to instance selection for classifi-
cation tasks. The instance acceptance/rejection threshold
Θ reflects the similarity of two instances. But, as the
experiments showed, better results in terms of prediction
accuracy and compression can be achieved if variable Θ
is used. Then the threshold is expressed rather not in
absolute values but in percentage of the standard deviation
of the output of k nearest neighbors std (Y (XS)). Thus,
in the areas of dense data the standard deviation of the
k nearest neighbor for instance can be 0.3, while in the
sparse zones it can be for instance 3.0. So the threshold Θ
should be adjusted accordingly as Θ = α · std (Y (XS))
(Eq. 5). Lower α always leads to better data compression,
because fewer instances are selected. On the other hand,
in terms of prediction accuracy, there exists an optimal
value of α, which according to our experiments is usually
between 5 and 8 for noise reduction algorithms as the
RegENN. If the difference between the value predicted
by k-NN (or another algorithm) and the actual value is
greater than Θ then the vector is rejected.

d3(x1, x2) = α · std (Y (XS)) · d2(x1, x2) (5)

VI. INSTANCE WEIGHTING

Instance weighting is especially important in case of
noisy data. The simplest version of instance weighting
is instance selection. We propose that instance weighting
should be used even inside the instance selection.

The problem with crisp instance selection i.e. rejecting
or accepting an instance in the training set is to define
the optimal Θ. In many cases it is not clear what θ
value should be used. One solution is to optimize Θ in
crossvalidation. However, as the experiments showed, this
is a similar problem as with feature selection and a similar
solution seems to be most effective, i.e. assigning a weight
to each instance instead of crisp rejection threshold.
Only instances for which the weight is really very small
should be totally rejected. The rationale behind this is that
even the partially noisy instances still carry some useful
information.

In our work [17] we evaluated several approaches to
noise reduction in MLP neural network training. These
approaches could be divided into two groups: input noise
reduction and output noise reduction. We evaluated in-
put noise reduction by the RegENN algorithm and by
assigning each vector a weight with a modified Global
Anomaly Score algorithm and then multiplying the error
the network made on that vector by its anomaly score.
(The anomaly score is proportional to the average distance
between a given point and its k nearest neighbors.) The
output noise reduction methods were based on modifica-
tion of the network error function, to make the learning

process less sensitive to outliers. In this case we didn’t
use any information about the vectors obtained before
the network training. Instead of applying MSE error, we
used other functions ,as proposed in Several such error
functions were proposed in [3], [4], [14], which reduced
the influence of the most ”abnormal” vectors on the total
network error.

In this paper, we discuss another very simple solution
which in the tests performed especially well: a product
of the standard MSE function and the same exponential
function we used for k-NN weighting in k-NN based
prediction and instance selection, given in the formula
(Eq. 6) and presented in Fig. 1.

E = (ya − yp)2 · Exp(−a(ya − yp)2) (6)

where ya is the actual and yp is the predicted output.
The parameter a is gradually increased during the network
training. When the training starts with random network
weights, the network produces random errors for each
vector. So at this stage we should not interfere in the
learning process, thus a must be small. As the network
learns the data representation, it starts to response with
higher errors to the outliers and we can increase a to
reduce the outlier influence on the network mappings. The
error first increases as the distance between the actual
vector output and the value predicted by the network
increases. Then it begins to increase slower and finally
to decrease asymptotically to zero. In this way the bigger
the outlier is, the weaker is its influence on the network
mappings. That works very well in practice.

We can also use the instance weighting with k-NN on
noisy data. In that case we first determine with k-NN
the instance weights wi = Exp(−b(ya − yp)2) for each
vector and then, we run the k-NN algorithm the second
time, now applying the weights. That reduces the outlier
influence on the final prediction in an analogical way like
with the MLP network.

Figure 1. k-NN decay function (b=0.25) and MLP Error
functions for a = 0.25, 0.50, 1.0.



VII. EXPERIMENTAL RESULTS

We performed the tests with linear and exponential
weighting functions in three areas:

1) k-NN based prediction;
2) RegENN-based instance selection with MLP net-

work as the prediction;
3) MLP - based prediction with output weighting;
All the tests were carried out on the same five regres-

sion datasets. We used the datasets in their original form
and with different amounts of noise added to the inputs
as well as to the output value of the training dataset, as
listed below:

0) p = 0, f = 0;
1) p = 0.5, f = 0.20;
2) p = 0.8, f = 0.25;
3) p = 1.5, f = 0.30;
4) p = 2.5, f = 0.35;
5) p = 4.0, f = 0.40;
where p (amplitude) is the standard deviation of the

Gaussian distribution from which the random noise was
added (the noise amplitude was each time a random num-
ber from zero to p) and f (frequency) is the probability
(with uniform distribution) of the noise being added to a
given data point. The first line in tables 1-5 represents
the input noise level and the output noise level. Thus
0/0 means that no noise was added, and e.g. 2/0 means
that only the input noise was added with p=0.8 and
f=0.25, 0/2 indicates that only output added with p=0.8
and f=0.25, and 3/3 means that input and output noise
was added, both with p=1.5 and f=0.30.

We evaluated performance of the following algorithms:
1) kNN;
2) AD-kNN (k-NN with Attribute and Distance weight-

ing);
3) ADI-kNN (k-NN with Attribute, Distance and In-

stance weighting);
4) MLP-MSE (MLP network trained with MSE error

function);
5) RegENN MLP-MSE (MLP network trained with

MSE error function on the data selected by RegENN
weighted by attribute and distance);

6) RegWENN MLP-MSE (MLP network trained with
MSE error function on the data selected by RegENN
weighted by attribute, distance, outlier and density);

7) MLP-LTA (MLP network trained with Least
Trimmed Absolute Values error function [16]);

8) MLP-EXP (MLP network trained with the multipli-
cation of Exponential and MSE error function);

Although the optimal k was lower for lower noise levels
(eg. k=7) and higher for higher noise levels (eg. k=30),
we kept k=11 during all experiments. The MLP trained
with the LTA error function [16] was added to compari-
son, because our previous tests with various noise-robust
MLP training methods showed the LTA obtained the best

performance on noisy data. All the tests were run in 10-
fold crossvalidation. We used a single hidden layer MLP
network with 6 hidden neurons for each dataset, with
hyperbolic tangent transfer functions in the hidden layer
and linear transfer function in the output layer. We trained
the network using 12 iterations of VSS algorithm [10].

We present the results obtained for five datasets. The
upper rows in the tables contains the average RMSE
value and the lower rows the RMSE standard deviation.
Figure 2 shows the weighted average results over the
five datasets for different noise levels. To make the error
values comparable, the weights were 3 for Mortgage
(because of its very low error vales) and 1 for each other
dataset. The software used in the experiments was created
in C# and it can be obtained together with the datasets
from www.kordos.com/cybconf2015.

Figure 2. Weighted average prediction results over the five
datasets for different noise levels.

VIII. CONCLUSIONS

The first conclusion is that one should always use
k-NN with feature weighting. Although it is not our
discovery, the improvement due to feature weighting is
so enormous that we must mention this here. All the
other weightings added to k-NN (distance and outlier
weighting) and to RegENN (density weighting) also bring
some improvement, although usually not so big as feature
weighting. Outlier weighting (instance weighting) with
the exponential function brings some improvement to
k-NN and to RegENN based on that k-NN, but the
improvement is relatively small. On the other hand, the
outlier weighting applied in an analogical way to the MLP
network error function performs really very well on noisy
data, allowing for obtaining much lower prediction errors.
What is interesting, density weighting applied to RegENN
reduces the errors of the final predictor (MLP network



Table I. RMSE IN 10-FOLD CROSSVALIDATION FOR BUILDING DATASET. THE UPPER ROWS IN EACH TABLE CONTAINS THE AVERAGE RMSE
VALUE AND THE LOWER ROWS STANDARD DEVIATION.

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

k-NN 0.37 0.38 0.40 0.41 0.43 0.43 0.37 0.39 0.42 0.53 0.72 0.39 0.43 0.47 0.57 0.80
0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.06 0.04 0.05 0.05 0.05 0.06 0.06

AD-kNN 0.25 0.26 0.27 0.27 0.30 0.35 0.26 0.27 0.34 0.46 0.69 0.27 0.28 0.35 0.58 0.72
0.02 0.02 0.02 0.02 0.03 0.06 0.02 0.02 0.02 0.01 0.07 0.02 0.03 0.03 0.07 0.07

ADI-kNN 0.25 0.26 0.27 0.28 0.30 0.33 0.24 0.28 0.33 0.42 0.68 0.27 0.29 0.36 0.59 0.70
0.02 0.02 0.02 0.03 0.03 0.04 0.02 0.02 0.02 0.04 0.05 0.02 0.03 0.03 0.06 0.07

MLP-MSE 0.25 0.26 0.30 0.34 0.40 0.45 0.25 0.27 0.33 0.49 0.64 0.27 0.30 0.40 0.53 0.76
0.02 0.01 0.02 0.03 0.03 0.02 0.01 0.02 0.02 0.03 0.10 0.01 0.01 0.03 0.06 0.05

RegENN MLP-MSE 0.25 0.26 0.28 0.31 0.40 0.42 0.25 0.28 0.32 0.47 0.72 0.28 0.32 0.40 0.53 0.67
0.02 0.02 0.02 0.03 0.03 0.05 0.02 0.01 0.02 0.02 0.05 0.01 0.02 0.03 0.04 0.08

RegWENN MLP-MSE 0.25 0.26 0.28 0.29 0.38 0.41 0.24 0.28 0.30 0.43 0.71 0.26 0.31 0.36 0.47 0.61
0.02 0.01 0.02 0.02 0.03 0.05 0.02 0.01 0.02 0.02 0.05 0.01 0.03 0.03 0.04 0.06

MLP-LTA 0.45 0.44 0.43 0.46 0.49 0.52 0.44 0.42 0.45 0.45 0.50 0.44 0.45 0.48 0.54 0.60
0.03 0.02 0.02 0.01 0.02 0.03 0.01 0.02 0.02 0.02 0.04 0.03 0.01 0.03 0.03 0.03

MLP-EXP 0.24 0.27 0.58 0.27 0.30 0.32 0.29 0.29 0.30 0.34 0.35 0.31 0.35 0.38 0.42 0.50
0.02 0.04 0.12 0.07 0.04 0.03 0.11 0.10 0.04 0.06 0.03 0.09 0.10 0.05 0.05 0.09

Table II. RMSE IN 10-FOLD CROSSVALIDATION FOR STEEL DATASET.

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

kNN 0.30 0.30 0.31 0.32 0.34 0.34 0.34 0.39 0.47 0.70 0.37 0.40 0.45 0.55 0.68 0.74
0.09 0.09 0.10 0.10 0.09 0.08 0.09 0.09 0.09 0.07 0.06 0.10 0.09 0.08 0.07 0.07

AD-kNN 0.28 0.29 0.28 0.30 0.31 0.32 0.29 0.39 0.47 0.67 0.32 0.36 0.39 0.51 0.61 0.71
0.08 0.08 0.08 0.08 0.09 0.08 0.07 0.08 0.09 0.07 0.10 0.10 0.09 0.09 0.10 0.08

ADI-kNN 0.27 0.28 0.28 0.30 0.32 0.32 0.29 0.35 0.47 0.65 0.33 0.35 0.40 0.47 0.58 0.68
0.09 0.09 0.09 0.10 0.09 0.08 0.09 0.08 0.08 0.10 0.06 0.08 0.09 0.08 0.09 0.07

MLP-MSE 0.28 0.29 0.32 0.36 0.42 0.50 0.28 0.31 0.38 0.51 0.66 0.28 0.35 0.42 0.53 0.70
0.08 0.11 0.08 0.08 0.08 0.07 0.09 0.08 0.08 0.06 0.06 0.08 0.07 0.07 0.08 0.12

RegENN MLP-MSE 0.27 0.29 0.33 0.36 0.42 0.50 0.30 0.33 0.35 0.52 0.67 0.29 0.33 0.41 0.55 0.68
0.07 0.07 0.08 0.06 0.07 0.10 0.09 0.07 0.10 0.09 0.08 0.07 0.07 0.09 0.08 0.10

RegWENN MLP-MSE 0.27 0.29 0.33 0.35 0.42 0.48 0.30 0.32 0.35 0.52 0.65 0.30 0.33 0.40 0.55 0.65
0.08 0.08 0.08 0.08 0.07 0.12 0.10 0.08 0.09 0.09 0.09 0.07 0.07 0.10 0.12 0.13

MLP-LTA 0.42 0.42 0.43 0.45 0.49 0.52 0.40 0.46 0.47 0.49 0.48 0.44 0.44 0.48 0.52 0.55
0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.05 0.05 0.03 0.03 0.04 0.03 0.03 0.04 0.06

MLP-EXP 0.44 0.45 0.48 0.50 0.53 0.60 0.45 0.41 0.41 0.55 0.55 0.46 0.69 0.54 0.58 0.65
0.13 0.14 0.17 0.12 0.11 0.15 0.11 0.12 0.10 0.16 0.18 0.12 0.22 0.16 0.18 0.15

Table III. RMSE IN 10-FOLD CROSSVALIDATION FOR CRIME DATASET.

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

kNN 0.58 0.59 0.60 0.61 0.61 0.60 0.58 0.57 0.62 0.70 0.83 0.59 0.60 0.64 0.74 0.90
0.07 0.08 0.07 0.08 0.09 0.08 0.07 0.07 0.09 0.08 0.09 0.07 0.08 0.08 0.05 0.11

AD-kNN 0.58 0.59 0.60 0.60 0.59 0.59 0.59 0.59 0.62 0.69 0.85 0.59 0.61 0.63 0.70 0.89
0.09 0.09 0.07 0.07 0.07 0.08 0.09 0.08 0.08 0.07 0.14 0.08 0.09 0.10 0.07 0.10

ADI-kNN 0.58 0.59 0.59 0.61 0.60 0.60 0.59 0.60 0.61 0.68 0.80 0.59 0.61 0.62 0.67 0.83
0.09 0.08 0.08 0.08 0.07 0.07 0.08 0.08 0.06 0.06 0.18 0.09 0.09 0.08 0.11 0.15

MLP-MSE 0.58 0.60 0.61 0.60 0.62 0.61 0.59 0.59 0.64 0.75 1.20 0.60 0.61 0.65 0.70 1.05
0.08 0.08 0.07 0.06 0.09 0.06 0.10 0.08 0.11 0.10 0.15 0.08 0.08 0.07 0.11 0.12

RegENN MLP-MSE 0.57 0.60 0.59 0.62 0.61 0.66 0.61 0.64 0.66 0.76 1.10 0.58 0.62 0.65 0.79 0.89
0.08 0.09 0.07 0.08 0.09 0.09 0.07 0.08 0.09 0.10 0.20 0.09 0.07 0.10 0.06 0.13

RegWENN MLP-MSE 0.57 0.60 0.59 0.61 0.61 0.63 0.61 0.60 0.66 0.76 1.04 0.58 0.61 0.62 0.74 0.84
0.08 0.08 0.08 0.08 0.09 0.08 0.07 0.08 0.10 0.10 0.23 0.09 0.08 0.09 0.08 0.12

MLP-LTA 0.68 0.68 0.69 0.67 0.70 0.70 0.69 0.68 0.70 0.71 0.72 0.68 0.70 0.71 0.72 0.72
0.06 0.05 0.05 0.06 0.04 0.06 0.05 0.05 0.06 0.06 0.05 0.06 0.03 0.07 0.03 0.07

MLP-EXP 0.60 0.61 0.63 0.63 0.62 0.60 0.64 0.65 0.64 0.61 0.61 0.63 0.62 0.61 0.61 0.64
0.10 0.10 0.07 0.11 0.08 0.10 0.09 0.09 0.09 0.08 0.08 0.10 0.08 0.11 0.09 0.08

in our case), but what it reduces more is the number
of selected instances. We did not report the number
here, but on average the best results in the experimental
evaluation were obtained when rejecting about 10-15% of
instances from the training set without density weighting.
With density weighting the number increased to 20-30%.
While in classification tasks, frequently even over 70% of
instances can be rejected, in regression it is impossible,
because each point in the data space matters, not only the

locations of the class boundaries. The final conclusion is
that the distance and instance (outlier) weighting with ex-
ponential function brings some improvement to the k-NN
and RegENN algorithms on noisy data in regression tasks
and that it brings a very significant improvement when
applied to MLP network error function. It is likely that
the best results can be obtained by combining weighted
RegENN with EXP. However, we have not verified this
experimentally yet.



Table IV. RMSE IN 10-FOLD CROSSVALIDATION FOR YACHT HYDRODYNAMICS DATASET.

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

kNN 0.64 0.65 0.65 0.67 0.66 0.67 0.65 0.65 0.67 0.71 0.86 0.67 0.67 0.72 0.79 1.00
0.18 0.19 0.19 0.19 0.20 0.20 0.18 0.18 0.18 0.19 0.17 0.17 0.18 0.18 0.25 0.16

AD-kNN 0.14 0.15 0.18 0.22 0.24 0.26 0.14 0.17 0.28 0.45 0.70 0.17 0.19 0.27 0.48 0.85
0.04 0.03 0.10 0.09 0.09 0.10 0.03 0.05 0.07 0.12 0.13 0.05 0.06 0.08 0.09 0.14

ADI-kNN 0.11 0.13 0.16 0.20 0.21 0.21 0.11 0.14 0.22 0.36 0.64 0.13 0.20 0.28 0.46 0.78
0.04 0.06 0.07 0.11 0.08 0.11 0.04 0.03 0.05 0.03 0.18 0.05 0.06 0.08 0.11 0.13

MLP-MSE 0.21 0.24 0.26 0.46 0.52 0.60 0.27 0.29 0.28 0.52 0.88 0.23 0.36 0.49 0.80 1.14
0.06 0.07 0.08 0.08 0.14 0.11 0.11 0.19 0.08 0.13 0.15 0.05 0.14 0.13 0.07 0.19

RegENN MLP-MSE 0.22 0.28 0.35 0.53 0.56 0.62 0.25 0.20 0.32 0.67 0.98 0.28 0.36 0.53 0.76 1.10
0.06 0.09 0.11 0.10 0.15 0.12 0.06 0.04 0.05 0.25 0.12 0.08 0.08 0.12 0.16 0.10

RegWENN MLP-MSE 0.20 0.21 0.30 0.48 0.50 0.60 0.22 0.19 0.30 0.50 0.78 0.21 0.36 0.49 0.68 0.89
0.07 0.09 0.09 0.08 0.10 0.10 0.05 0.03 0.06 0.12 0.14 0.09 0.08 0.10 0.13 0.13

MLP-LTA 0.38 0.45 0.39 0.46 0.45 0.58 0.35 0.43 0.39 0.47 0.53 0.37 0.43 0.52 0.63 0.69
0.08 0.06 0.06 0.09 0.10 0.10 0.04 0.08 0.07 0.06 0.09 0.08 0.10 0.13 0.12 0.10

MLP-EXP 0.39 0.45 0.48 0.45 0.42 0.57 0.71 0.70 0.22 0.47 0.53 0.56 0.46 0.59 0.64 0.68
0.10 0.12 0.14 0.15 0.10 0.12 0.23 0.26 0.09 0.22 0.20 0.18 0.20 0.21 0.11 0.13

Table V. RMSE IN 10-FOLD CROSSVALIDATION FOR MORTGAGE DATASET.

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

kNN 0.080 0.088 0.092 0.091 0.094 0.096 0.104 0.132 0.218 0.381 0.702 0.103 0.141 0.218 0.371 0.690
0.013 0.005 0.016 0.017 0.030 0.080 0.009 0.014 0.022 0.032 0.050 0.009 0.014 0.022 0.033 0.051

AD-kNN 0.073 0.082 0.085 0.085 0.090 0.094 0.095 0.132 0.222 0.371 0.670 0.103 0.136 0.238 0.382 0.684
0.012 0.011 0.021 0.030 0.060 0.014 0.010 0.029 0.041 0.077 0.009 0.010 0.029 0.041 0.080 0.090

ADI-kNN 0.073 0.083 0.085 0.085 0.088 0.090 0.088 0.115 0.185 0.329 0.572 0.096 0.113 0.204 0.301 0.519
0.011 0.015 0.029 0.050 0.081 0.011 0.015 0.029 0.051 0.078 0.011 0.015 0.029 0.051 0.076 0.110

MLP-MSE 0.079 0.095 0.102 0.123 0.130 0.133 0.081 0.119 0.162 0.274 0.461 0.092 0.124 0.177 0.300 0.457
0.013 0.014 0.033 0.043 0.035 0.013 0.014 0.033 0.043 0.061 0.058 0.014 0.033 0.043 0.060 0.102

RegENN MLP-MSE 0.076 0.090 0.097 0.120 0.129 0.134 0.082 0.109 0.122 0.222 0.302 0.085 0.107 0.154 0.239 0.316
0.010 0.012 0.024 0.025 0.041 0.010 0.015 0.030 0.041 0.055 0.042 0.010 0.022 0.038 0.056 0.081

RegWENN MLP-MSE 0.074 0.093 0.101 0.111 0.130 0.120 0.081 0.102 0.113 0.268 0.220 0.090 0.115 0.135 0.211 0.268
0.010 0.015 0.021 0.027 0.048 0.012 0.012 0.031 0.037 0.048 0.039 0.011 0.024 0.032 0.071 0.082

MLP-LTA 0.084 0.095 0.088 0.092 0.108 0.119 0.087 0.102 0.114 0.129 0.143 0.089 0.099 0.125 0.149 0.165
0.012 0.011 0.019 0.014 0.018 0.014 0.011 0.019 0.013 0.022 0.010 0.014 0.014 0.015 0.022 0.024

MLP-EXP 0.083 0.083 0.093 0.102 0.123 0.140 0.080 0.082 0.095 0.108 0.125 0.089 0.105 0.105 0.132 0.147
0.012 0.013 0.018 0.012 0.015 0.012 0.013 0.018 0.012 0.020 0.012 0.013 0.018 0.012 0.020 0.020
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