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Abstract. This paper discusses approaches to noise-resistant training of MLP
neural networks. We present various aspects of the issue and the ways of obtain-
ing that goal by using two groups of approaches and combinations of them. The
first group is based on a different processing of each vector depending of the like-
lihood of the vector being an outlier. The likelihood is determined by instance
selection and outlier detection. The second group is based on training MLP neu-
ral networks with non-differentiable robust objective functions. We evaluate the
performance of particular methods with different level of noise in the data for
regression problems.

1 Introduction

Multilayer perceptrons (MLP) are among the most popular approaches used to build
data-based models for various applications. They are usually considered as reliable and
easy-to-use tools. However, their performance strongly depends on the quality of the
training data [3, 18]. In this paper we present and test some state of the art methods,
which allows training the MLPs on contaminated datasets.

MLP networks are trained by minimizing an error function on the training set, to
make the network map the input data distribution to output space variables, which in
case of regression are real numbers. However, since the error is minimized to make the
network output for each vector as close as possible to the real vector output, it is crucial
that the training data is of a good quality. Good quality means that the data reflects the
underlying problem. If the data contains a lot of faulty measurements, other errors and
outliers it obviously does not match the problem well, so also the neural network trained
on that data will not.

In this paper we take into account two groups of methods to deal with the noisy data
problem. The first group of methods makes some adjustment to other neural network
itself, such as the error function, the neuron transfer functions and others to make the
network to process differently data points of different properties in such a way that it is
less sensitive to outliers. These methods are presented in section 2.

The second group uses outlier reduction methods, which are applied to the data prior
to the network training. Thus, the data is modified and a typical MLP network is then
trained on that data. This is discussed in section 3.
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Finally we discuss the possibilities of joining the two groups of methods together.
The section 4 presents the experimental comparison of nine different methods from
all the three groups on seven regression tasks performed with various amount of noise
added to the data. Finally the section 5 concludes this work.

2 Data with Outliers and Robust Learning

An outlier can be defined as an observation distant from the bulk of the data. Such
observations may be caused by human mistakes, measurement or rounding errors, long-
tailed noise, etc. This is why outliers are usually considered as gross errors but they can
be also potentially meaningful. In typical raw data, the quantity of outliers ranges from
1% to 10% [11], however it is hard to predict how much outliers the data contain.

The feedfoward neural network trained to minimize MSE (mean squared error) builds
a model based on fitting training patterns as close as possible (according to the MSE
measure). Such approach is indeed optimal for data contaminated by errors generated
from zero-mean Gaussian distribution but when outliers appear in the training set, the
network model becomes unreliable [3, 18, 19]. This is why several robust learning al-
gorithms, to train neural networks on the data with outliers, have been proposed [3–
5, 18, 25]. Such methods, usually based on the robust statistical estimators, should be
reliable also when the training data quality is unknown.

One of the basic approaches to make a learning algorithm more robust to outliers
is to replace the MSE performance measure by another function. In this approach, the
robustness to outliers is achieved by reducing the impact of large training residuals, po-
tentially caused by outlying data points. Many such functions derived from robust sta-
tistical estimators can be found in the literature. New LMLS (Least Mean Log Squares)
error function was proposed by Liano [18]. Chen and Jain [3] applied the Hampel’s hy-
perbolic tangent with scale estimator β, determining residuals suspected to be caused
by outliers, Chunag and Su [4] added the annealing scheme to decrease the value of
β. Error functions based on the tau-estimators [19] and the MCD (Minimum Covari-
ance Determinant) [24] were also proposed. El-Melegy et al. presented the Simulated
Annealing for Least Median of Squares (SA-LMedS) algorithm [5], while Rusiecki
proposed the LTS (Least Trimmed Squares) [23] and LTA (Least Trimmed Absolute
Values) [26] algorithms. The RANSAC (random sample consensus) framework, known
from the area of image processing, was applied to the MLPs learning by El-Melegy
[6–8].

2.1 Trimmed and Median-Based Error Measures

In the previous research many modified performance functions have been examined and
the best results have been obtained with the quantile-based and trimmed performance
measures [5, 17, 25, 26]. Trimmed and quantile-based robust estimators are proved to be
outlier-resistant, so it is not surprising that they perform well also in network training.

The main problem is that such measures are not continuous and some approximations
of their derivatives in gradient-based learning must be used. An alternative approach is
to train the network with non-gradient methods. In this paper we use the Variable Step
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Search (VSS) Algorithm [14] to train the network with robust non-differentiable error
measures. The main idea of the VSS algorithm is to guess the optimal modifications of
single weights at each iteration based on their changes in previos iterations and then to
adjust the changes. Since change of a single weight does not change signal propagations
in the entire network, the signals (unlike in gradent-based methoods) are propagated
each time only through the recently changed fragments of the network. However, we
do not focus on the learning algorithm itself and use VSS with the same parameters
through all the tests. It is also not crucial to use VSS and it can be replaced with several
other MLP training methods.

3 LTA and ILMedS Algorithms

One of the desired properties of robust estimators is a high breakdown point. It is de-
fined as the smallest percentage ε∗ of contaminated data that can cause the estimator
to take on aberrant values [11]. Theoretically, for the least squares method the break-
down point ε∗ = 0. The least trimmed absolute value (LTA) and the least median of
squares (LMedS) are known in the robust statistics to be the classical high breakdown
point robust estimators (breakdown point close to ε∗ = 0.5). In fact, the breakdown
point ε∗ = 0.5 is the best that can be expected from any estimator [22]. Unlike robust
M-estimators, the LTA and LMedS do not change operations performed on single resid-
uals (such as squaring or taking absolute value), but replace the sum of residuals with
a trimmed sum or a certain statistical value as median. Hence, the LMedS estimator is
based on the Chebyshev (L∞) norm and the LTA is a trimmed version of L1 norm.

3.1 Least Trimmed Absolute Values

The least trimmed absolute value estimator (LTA) is one of the well-known robust lo-
cation estimators. Similarly to the least trimmed squares (LTS) [22] it does not change
operations performed on residuals. Hence, in this case, residuals are not squared but
their absolute values are taken. Then the summation is replaced with a trimmed sum.

Let us consider the general nonlinear regression model:

yi = η(xi, θ) + εi, i = 1, . . . , n, (1)

where yi denotes the dependent variable, xi = (xi1, . . . , xik) the independent input
vector, θ ∈ Rp is the underlying parameter vector, and εi denotes independent and
identically distributed (iid) random errors with a continuous distribution function. Now
we can define the least trimmed absolute value estimator:

θ̂ = arg min
θ∈Rp

h∑

i=1

(|r|)i:n, (2)

where (|r|)1:n ≤ · · · ≤ (|r|)n:n are the absolute residuals |ri(θ)| = |yi − η(xi, θ)|
sorted in ascending order. In the summation only h smallest absolute values of the
residuals are used. Setting the trimming constant h as n/2 < h ≤ n we can decide
what percentage of largest residuals will not affect the estimator.
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LTA Error Criterion. The new robust error criterion based on the LTA estimator was
introduced in [26] as:

ELTA =

h∑

i=1

(|r|)i:n, (3)

where (|r|)1:n ≤ · · · ≤ (|r|)n:n are ordered absolute network output residuals for each
training pattern.

This error measure should provide robustness to outliers excluding from the training
process patterns causing largest errors (assuming that these patterns are outliers). The
trimming constant h can be set empirically but in [26] a simple approach to estimate
the scaling factor was proposed. Calculation of h is based on a robust measure of scale,
namely the median of all absolute deviations from the median (MAD)[13]:

MAD (ri) = 1.483 median|ri −median(ri)|. (4)

The trimming parameter is then calculated as:

h = ‖{ri : |ri| < 3 ∗ MAD(|ri|), i = 1 . . . n}‖. (5)

To determine h, errors obtained after initial training phase should be used.

3.2 Iterative Least Median of Squares

LMedS Estimator. The least median of squares estimator (LMedS) was originally
proposed by Rousseeuw [22] but it was informally used even earlier [13]. The LMedS
estimator acts on the squared residuals, replacing sum by the robust median, so it can
be defined as follows:

θ̂ = argmin
i

med ri
2. (6)

Iterative LMedS. In the domain of robust neural network learning algorithms, the
LMedS error criterion was proposed by El-Melegy in [5], where simulated annealing
was employed to minimize the median error. The LMedS performance is defined as:

Emed = med ri
2. (7)

For the error criterion given by 7, the following additional training procedure was
proposed [5, 25]. After an initial training phase, the robust standard deviation (RSD)[21]
is calculated as:

σr = 1.4826 ∗ (1 + 5

(N − p)
)
√
E∗

med, (8)

where E∗
med is the best achieved LMedS error value (N and p are the size of the training

set and the dimension of the input vector). Then all the training patterns associated with
residuals exceeding a threshold should be removed from the training set:

r2i ≥ 2.5 ∗ σ2
r . (9)

These steps should be repeated iteratively several times. A detailed explanation of the
chosen threshold and methodology can be found in [5, 21, 25].

To train the network with LTA and ILMedS approaches we decided to use non-
gradient VSS algorithm [14] to cope with the problem of the performance function
non-differentiability.
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4 Outlier Reduction

4.1 Instance Selection

Using instance selection, the most of the outliers get removed from the training dataset
and the noise in the data is reduced. In general there may by also other reasons for in-
stance selection, as reducing the data size or improving generalization, but these topics
are out of scope of this work. A large survey of about 70 different instance selection
algorithms for classification tasks can be found in [27]. So far there were very few ap-
proaches in the literature to instance selection for regression problems. Moreover, the
approaches were verified only on artificial datasets generated especially for the purpose
of testing the algorithms. Zhang [31] presented a method to select the input vectors while
calculating the output with k-NN. Tolvi [28] presented a genetic algorithm to perform
feature and instance selection for linear regression models. In their works Guillen et
al. [10] discussed the concept of mutual information used for selection of prototypes in
regression problems.

Instance selection for regression problems is a more complex issue for two reasons.
First, in classification it is enough to determine the border between two classes, while
in regression the values in each point of the data are important. This results in a much
weaker data compression that can be achieved in regression tasks. And second, in clas-
sification we must only decide if a certain points belong to a given class or not. Thus
most of the instance selection algorithms are based on k-NN classification, where the
result of the classification determines if the given instance is preserved or rejected. In
regression problems, while comparing two instances, we consider the distance between
them, according to some (usually Euclidean) distance measure. Thus, the criterion to
decide whether a given instance should be rejected is some distance threshold. There
are a lot of options of how the threshold can be determined. It can be constant or pro-
portional to the local density of the data. In general the threshold should be determined
experimentally, but our experiments showed that in the regENN algorithm [15], the re-
jection threshold θ can be set to 2-8 standard deviations of the data for a broad range
of regression problems. The higher value can be used for a better quality data and the
lower for highly contaminated data.The reason for this is that in more contaminated
data there are more outliers that should be removed and there is a higher probability
that the some of the neighbors of the considered instance are also outliers. While in
a better quality data even the points that are far from their neighbors do not necessary
require rejection, as they may not contain any wrong values. Using θ proportional to the
standard deviation of k nearest neighbors of the instance xi, instead of proportional to
a standard deviation of the entire data allows, as the experiments showed, for obtaining
higher compression of the dataset while preserving the same prediction accuracy. We
developed the regENN algorithm from the ENN (Edited Nearest Neighbor) algorithm
[30] and presented it in [15]. The main idea of the regENN algorithm is to reject in-
stances if their output differs more than θ from a value predicted by the weighted k-NN
with k = 9, where the weight wi exponentially decreases with the distance di between
the given instance and its i-th neighbor xi. The predicted output y is expressed by the
following equation:
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y =

∑k
i=1 wiyi∑k
i=1 wi

(10)

where wi = 2−0.2di . As the regression model to predict the output Y (xi) we use
k-NN with k = 9 as the Model(T,xi) we also use k-NN with k = 9, although also
other methods can be used here, as neural network, regression trees, etc. (k = 9 was
evaluated experimentally to be a good choice for a broad range of problems [16]).

Algorithm 1. regENN algorithm
Require: T

m ← sizeof(T);
for i = 1 . . .m do

Ȳ (xi) =Model((T \ xi),xi);
S ← k-NN(T,xi)
θ = α · std (Y (XS))
if
∣
∣Y (xi)− Ȳ (xi)

∣
∣ > θ then

T ← T \ xi

end if
end for
P ← T
return P

4.2 Anomaly Detection

Anomaly detection deals with the outliers in a different way than instance selection;
it does not reject or keep them but it assigns an anomaly score to each instance. The
higher the score, the bigger outlier is the instance. There is a bunch of anomaly detec-
tion methods and a survey of them can be found in [2]. For the purpose of this work we
modified the k-NN Global Anomaly Score algorithm (k-NN GAS). The k-NN GAS as-
signs the anomaly scores prior to the network training and then the MLP error function
divides the error the network makes on the instance by the instance anomaly score. In
this way the more outstanding instances have weaker influence on the network training.
The advantage of anomaly detection over instance selection is that we do not have to
make a crisp decision about the instance. The k-NN GAS calculates the anomaly score
based on the k-NN algorithm. The outlier score of an instance is the average distance
between the instance and its k nearest neighbors (again we use k = 9 and Euclidean dis-
tance measure). However, for the purpose of labeled data, we had to modify the k-NN
GAS, including both distances: in the input space dx and in the output space dy . We
define the modified anomaly score Asc as:

Asc = dy/dx (11)
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5 Experimental Evaluation

5.1 Datasets

We performed the experiments on two groups of regression problems: the real-world
datasets and artificial datasets. We used the real-world datasets, which were first stan-
dardized so that the mean value of each attribute is zero and the standard deviation
is one to make result comparison easier. We started from the original datasets (δ=0
in the tables 5-7) and gradually were adding some random noise to outputs only to
the training subsets in the crossvalidation. δ=0.1 represents v=0.5 and f=0.20, δ=0.2:
v=1.0 and f=0.25, δ=0.3: v=1.5 and f=0.30, δ=0.4: v=2.0 and f=0.35, δ=0.5: v=2.5
and f=0.40. The noise was added to outputs with random frequency f and amplitude
v(2 − r ∗ r), where 0 < r < 1 is a random number. The artificial datasets (Function
A, Function B and Function C) and Building Benchmark were contaminated with so-
called Gross Error Model [3, 4, 18, 23] with additive noise: F = (1− δ)G+ δH , where
F denotes the error distribution, G ∼ N(0.0, 10.0) models small Gaussian noise, and
H ∼ N(0.0, 0.1) represents high value outliers. Hence, the probability of outliers is δ.
The datasets are available from [32].

Function A. The 1-D function to be approximated was proposed by Liano in [18] and
used to test many robust learning algorithms [3–5, 19, 26]. It is defined as:

y = |x|−2/3. (12)

A training set was prepared by sampling independent variable in the range [−2, 2] with
a step 0.01.

Function B. The second 1-D function was previously used in [3, 4] and defined as:

y =
sin(x)

x
. (13)

For a training set, the independent variable was sampled in the range [−7.5, 7.5] with a
step of 0.1.

Function C. Another function was a two-dimensional spiral defined as:
{
x = sin y
z = cos y

(14)

Training data were generated by sampling the dependent variable y in the range [0, π]
with a step π/100. The network was trained to model y as a function of x and z (for the
given range it is a function).

Building. The first real-world training task was taken from the PROBEN 1 benchmark
collection [20]. The task was to predict building energy consumption based on 14 input
variables, such as the date, time, and weather conditions. Following [1], we trained a
network on the first 3156 observations to predict dependent variable over the next 1052
time steps of the test set.
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Table 1. MSE on training subset for Function A, 10 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.0038±0.002 0.11±0.006 0.44±0.008 0.49±0.08 0.59±0.09 0.81±0.09

ILMedS 0.0045±0.001 0.0057±0.003 0.0076±0.003 0.0059±0.002 0.015±0.005 0.021±0.01

LTA 0.0065±0.001 0.0041±0.001 0.011±0.005 0.0046±0.002 0.0063±0.002 0.0073±0.002

ENN-MSE 0.0039±0.002 0.0055±0.002 0.0077±0.003 0.013±0.030 0.014±0.033 0.018±0.028

ENN-ILMedS 0.0048±0.001 0.0061±0.002 0.0070±0.002 0.0071±0.002 0.0092±0.003 0.014±0.023

ENN-LTA 0.0039±0.001 0.0039±0.001 0.0048±0.002 0.0055±0.002 0.0059±0.002 0.0067±0.002

GAS-MSE 0.0033±0.002 0.0044±0.002 0.0048±0.002 0.0061±0.002 0.0087±0.002 0.017±0.004

GAS-ILMedS 0.0037±0.001 0.0042±0.002 0.0056±0.002 0.0088±0.002 0.021±0.005 0.067±0.019

GAS-LTA 0.0021±0.001 0.0020±0.001 0.0023±0.001 0.0027±0.001 0.0035±0.001 0.0068±0.002

Table 2. MSE on training subset for Function B, 10 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.0044±0.002 0.67±0.12 0.45±0.05 0.45±0.03 1.90±0.09 4.66±0.10

ILMedS 0.0045±0.002 0.046±0.017 0.024±0.011 0.056±0.035 0.11±0.03 0.15±0.09

LTA 0.0072±0.002 0.0056±0.002 0.0091±0.002 0.010±0.005 0.021±0.007 0.15±0.04

ENN-MSE 0.0034±0.001 0.0038±0.001 0.0055±0.002 0.0053±0.002 0.0081±0.002 0.027±0.007

ENN-ILMedS 0.0030±0.001 0.0040±0.003 0.0049±0.003 0.0056±0.002 0.0066±0.003 0.018±0.005

ENN-LTA 0.0038±0.001 0.0036±0.001 0.0040±0.002 0.0048±0.002 0.0076±0.003 0.015±0.004

GAS-MSE 0.0031±0.001 0.0049±0.002 0.0068±0.003 0.011±0.003 0.023±0.006 0.082±0.031

GAS-ILMedS 0.0042±0.001 0.0051±0.002 0.0067±0.003 0.013±0.003 0.034±0.011 0.18±0.06

GAS-LTA 0.0040±0.002 0.0043±0.002 0.0045±0.002 0.0045±0.002 0.0062±0.003 0.021±0.006

Table 3. MSE on training subset for Function C, 10 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.0025±0.001 0.19±0.02 0.60±0.05 1.62±1.77 2.58±0.48 4.16±0.30

ILMedS 0.0021±0.001 0.015±0.012 0.081±0.039 1.74±0.94 1.14±0.78 1.62±1.77

LTA 0.0008±0.001 0.0041±0.002 0.0045±0.002 0.014±0.009 0.011±0.004 0.057±0.031

ENN-MSE 0.0025±0.001 0.0041±0.002 0.0061±0.002 0.014±0.005 0.023±0.008 0.044±0.012

ENN-ILMedS 0.0020±0.001 0.0043±0.002 0.0087±0.003 0.017±0.006 0.022±0.005 0.039±0.01

ENN-LTA 0.0008±0.001 0.0018±0.001 0.0044±0.002 0.010±0.003 0.021±0.002 0.039±0.002

GAS-MSE 0.0022±0.001 0.0039±0.002 0.0056±0.008 0.015±0.004 0.044±0.009 0.1415±0.09

GAS-ILMedS 0.0024±0.001 0.0065±0.003 0.0077±0.003 0.013±0.003 0.092±0.035 0.34±0.01

GAS-LTA 0.0014±0.001 0.0035±0.001 0.0048±0.005 0.0042±0.002 0.0046±0.002 0.054±0.018

Concrete Compression Strength. There are 1030 instances with 7 input attributes
in the dataset reflecting the amount of particular substances in the concrete mixture,
such as cement, slag, water, etc. [29]. The task is to predict the concrete compressive
strength. There are 1030 instances in the database.

Crime and Communities. There are 318 instances with originally 120 input attributes
in the data set, describing various social, economical and criminal factors [29].
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Table 4. MSE on training subset for Building dataset, 10 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.0018±0.0003 1.013±0.030 3.85±0.06 8.29±0.13 15.6±0.2 24.3±2.2

ILMeds 0.0017±0.0003 0.036±0.019 0.16±0.06 0.25±0.13 0.41±0.18 15.2±1.5

LTA 0.0020±0.0004 0.0032±0.0006 0.0048±0.001 0.013±0.003 0.026±0.004 2.15±3.9

ENN-MSE 0.0018±0.0003 0.0039±0.0006 0.0060±0.012 0.018±0.004 0.034±0.006 0.24±0.05

ENN-ILMedS 0.0017±0.0003 0.0035±0.0006 0.0056±0.001 0.015±0.002 0.040±0.008 0.17±0.04

ENN-LTA 0.0020±0.0004 0.0035±0.0005 0.0081±0.002 0.014±0.002 0.029±0.005 0.21±0.05

However, after preliminary feature selection we used only 7 attributes. The value to
predict is per capita violent crime.

SteelC14. The dataset contains 2384 instances with 18 input attributes. The task is to
predict the amount of carbon that must be added in the steel-making process, given
various chemical and physical properties of the liquid steel in the furnace.

5.2 Experimental Setup

We implemented the algorithms in C#. The source code can be downloaded from the
SVN repository at [32]. The whole process in different configurations was run in 10-
fold crossvalidation loops. To be able to compare the results, we always measure and
report in the tables 1-7 the MSE error on the test sets, no matter which error function
was used for the network training. Also the MLP architecture was constant (the same for
each training method) for a given dataset (the numbers of hidden neurons are given in
the result tables). We run the tests on several forms of the datasets: the original datasets
and the datasets with various amount of random noise (see section 5.1) added to the
output variables. However, the noise was added only to the training data, while the test
data were left unchanged. That allowed us to determine how the methods can deal with
various noise levels.

5.3 Results

The results in the tables show MSE on the test subsets (always MSE on the test subset
is compared for any training method and any error function used during the training).
Analyzing results of the experiments, one may notice that the traditional method, min-
imizing MSE criterion perform well only for clean datasets without outliers. When the
data contains outlying patterns, the method breaks down. More interesting phenomenon
is that even for clean training data, different modified algorithms always obtained better
results (e.g. GAS methods in Table 1, or ENN and GAS methods in Table 2).

For contaminated training sets, all the enhanced algorithms performed better than the
traditional one. Only pure ILMedS method for several datasets (Tables 5, 6, 7) obtained
lager errors than the MSE. In general, the best performance was achieved for hybrid
algorithms combining ILMedS and LTA with ENN, or GAS approaches.
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Table 5. MSE on training subsets for Concrete dataset, 6 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.79±0.25 0.84±0.21 1.01±0.19 1.47±0.22 2.26±0.19 3.80±0.33

ILMedS 0.91±0.25 1.05±0.36 1.14±0.34 2.01±0.46 2.80±0.85 4.01±1.30

LTA 1.06±0.33 0.96±0.39 0.94±0.35 0.94±0.32 1.07±0.29 1.60±0.35

ENN-MSE 0.79±0.25 0.82±0.21 0.89±0.20 1.02±0.14 1.05±0.15 1.15±0.18

ENN-ILMedS 0.85±0.09 0.86±0.11 0.89±0.11 0.88±0.15 0.98±0.21 1.09±0.17

ENN-LTA 1.05±0.20 0.95±0.16 0.94±0.09 1.00±0.18 1.13±0.25 1.21±0.18

GAS-MSE 0.78±0.32 0.87±0.36 0.94±0.29 1.13±0.28 1.41±0.25 2.16±0.39

GAS-ILMedS 0.76±0.26 0.97±0.38 1.08±0.30 1.21±0.43 1.64±0.34 2.80±0.81

GAS-LTA 1.10±0.30 1.09±0.44 1.03±0.40 0.96±0.33 1.00±0.34 1.05±0.33

Table 6. MSE on training subsets for Crime dataset, 5 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.34±0.07 0.37±0.10 0.56±0.17 1.17±0.41 2.23±0.42 3.31±0.71

ILMedS 0.37±0.12 0.43±0.10 0.63±0.13 1.37±0.44 2.70±1.11 4.09±1.33

LTA 0.39±0.11 0.39±0.10 0.48±0.13 0.56±0.18 0.88±0.24 1.96±0.92

ENN-MSE 0.34±0.07 0.34±0.10 0.40±0.07 0.61±0.19 0.70±0.49 1.58±1.38

ENN-ILMedS 0.37±0.11 0.36±0.09 0.46±0.15 0.53±0.11 0.69±0.21 0.77±0.35

ENN-LTA 0.38±0.13 0.38±0.12 0.45±0.12 0.54±0.14 0.64±0.40 0.81±0.30

GAS-MSE 0.34±0.09 0.39±0.12 0.47±0.13 0.61±0.18 1.22±0.47 2.43±0.83

GAS-ILMedS 0.34±0.10 0.37±0.11 0.47±0.10 0.86±0.62 1.51±0.72 2.99±1.23

GAS-LTA 0.37±0.11 0.39±0.10 0.46±0.12 0.47±0.14 0.61±0.16 1.08±0.63

Table 7. MSE on training subsets for SteelC14, 5 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.071±0.018 0.10±0.03 0.27±0.02 0.70±0.08 1.61±0.12 3.14±0.16

ILMedS 0.082±0.035 0.17±0.04 0.55±0.14 1.07±0.41 2.06±0.86 2.58±1.05

LTA 0.071±0.045 0.069±0.038 0.093±0.034 0.11±0.05 0.15±0.04 0.27±0.07

ENN-MSE 0.069±0.016 0.072±0.031 0.92±0.10 0.10±0.04 0.14±0.04 0.22±0.06

ENN-ILMedS 0.070±0.014 0.098±0.023 0.21±0.03 0.55±0.02 0.78±0.18 1.13±0.56

ENN-LTA 0.068±0.015 0.111±0.029 0.24±0.03 0.60±0.02 0.12±0.03 0.21±0.07

GAS-MSE 0.073±0.045 0.084±0.021 0.121±0.010 0.27±0.05 0.69±0.08 1.30±0.32

GAS-ILMedS 0.071±0.034 0.110±0.050 0.221±0.140 0.60±0.25 0.68±0.20 1.31±0.41

GAS-LTA 0.073±0.054 0.074±0.036 0.074±0.043 0.078±0.04 0.09±0.04 0.15±0.05
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6 Conclusions

We described briefly some modifications of learning methods designed to deal with the
problem of noisy data for regression tasks. It is clearly evident that all the presented
approaches can be considered as more reliable than the traditional learning algorithms
minimizing the MSE criterion. This is particularly important when the quality of train-
ing data is unknown. Even for clean training patterns some of the modified methods
performed better than the MSE. For different testing problems and different amounts of
outliers the observed performances varied between tested methods. However, in most
cases, especially for the noisy data, ENN with LTA performed best. The future efforts
can be then directed at defining and choosing optimal algorithms for given conditions
(types of problems and quantities of outlying points).
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