
Improving MLP Neural Network Performance
by Noise Reduction

Mirosław Kordos1 and Andrzej Rusiecki2

1 University of Bielsko-Biala, Department of Mathematics and Computer Science
Bielsko-Biała, Willowa 2, Poland

mkordos@ath.bielsko.pl
2 Wroclaw University of Technology

Institute of Computer Engineering, Control and Robotics
Wrocław, Wybrzeze Wyspianskiego 27, Poland

andrzej.rusiecki@pwr.wroc.pl

Abstract. In this paper we examine several methods for improving
the performance of MLP neural networks by eliminating the influence
of outliers and compare them experimentally on several classification
and regression tasks. The examined method include: pre-training outlier
elimination, use of different error measures during network training,
replacing the weighted input sum with weighted median in the neuron
input functions and various combinations of them. We show how these
methods influence the network prediction. Based on the experimental
results, we also present a novel hybrid approach improving the network
performance.

1 Introduction

An outlier is an example that is numerically distant from the rest of the surround-
ing data. That can be either a point that is close to its neighbors in the input
space, but distant from the output space (different class or much different value
in the case of regression) or that is far from any points as well in the input as in
the output space. Outliers often indicate either of measurement error or some
data points that are so rare that should not be taken into account while building
the data model. Thus we want either to discard them or use approaches that
are robust to outliers. Another problem is that sometimes it cannot be clearly
stated if a given point is an outlier or not and rather some degree of being an
outlier that a crisp decision is preferred. In that case the model does not entirely
disregard such a point, but decreases its influence on the model parameters.

Multilayer perceptron neural networks (MLP) are one of the models that can
be used to represent the data. They are trained by minimizing an error function
on the training set, to make the network map the input data distribution to the
output space variable, which can be either discrete in the case of classification or
continuous in the case of regression, or can represent some structured data. The
performance of the trained network obviously depends not only on the network
architecture and learning algorithms, but on the quality of the training data

Improving MLP Neural Network Performance by Noise Reduction 141

as well. A noisy dataset with many outliers does not describe well the desired
mapping from the input to output space. In this case also the neural network
trained on that data will not implement the proper mapping.

The methods designed to make the network training robust to gross errors
and outlying data points are usually tested on artificially generated datasets with
variable amount of large outliers generated with different models [1–3, 24]. In
this article we intend to investigate the effectiveness of such algorithms on real
data without any additional contamination. This is due to the fact that in real
problems we do not know whether the data is contaminated, or reliable, when
the MLP model is built.

In this work we consider two groups of approaches to deal with this problem.
The first group is based on the modification of the neural network parameters,
as the error function or neuron input function. The network training is modified
and the training data is left in its original state. We discuss these approaches in
section 2. The second group of approaches is based on outlier reduction methods.
In this case the data is modified and the network is trained using the standard
mean square error function. This is discussed in section 3. We also present an
algorithm based on joining the aforementioned approaches. Section 4 presents
the experimental comparison of the discussed methods on several classification
and regression tasks and finally the last section concludes this work.

2 Modification of the Network Parameters

2.1 Outlier Dependent Error

The simplest approach to make the MLP training process more robust to outliers
is to replace common MSE (mean squared error) criterion with a function based
on the idea of robust statistical methods. The MSE function is typically used for
supervised neural networks training methods because it is simple and easy to
optimize error measure. However, similarly to the least mean squares method, it
is optimal only for data sets contaminated at most by Gaussian white noise [9, 11,
19]. This is due to the fact that MSE is strongly influenced by large errors. In the
case of network training, this influence, measured by a derivative with respect to
residuals, can be described by a linear function [9, 17]. To overcome the problem
of unpredictable MLP model for training data containing outliers, several robust
learning algorithms have been proposed. Such algorithms very often make use of
modified error function, derived from robust statistical estimators. The training
data are not filtered, so the robustness to outliers is based only on reducing the
impact of large training residuals, potentially caused by outlying data points.

The error training function can be modified in many ways: in [17] Liano
proposed a new LMLS (Least Mean Log Squares) error function based on so-
called M-estimators, which should be optimal for the Cauchy distribution but
performs well also for other long-tailed error distributions. Chen and Jain [1]
decided to use the Hampel’s hyperbolic tangent with additional scale estimator
β. The scale estimator helped in determining the range of residuals believed to

142 M. Kordos and A. Rusiecki

be outliers. A similar error performance function combined with the annealing
scheme to decrease β with the training progress was proposed by Chuang and
Su [2]. A more sophisticated approach, using tau-estimators was described in
[20]. Also quartile-based estimators were applied as the error function in the
LTS (Least Trimmed Squares) algorithm [23] and in [3], where El-Melegy et al.
presented the Simulated Annealing for Least Median of Squares (SA-LMedS)
algorithm. Similar median error function was described in [24]. The error measure
based on robust estimators was also combined with approaches known from image
processing, as random sample consensus algorithm [4–6].

All the aforementioned methods focus mainly on modifying the error function,
in order to decrease the influence that outliers may have on the network training.
In this article we decided to test the most popular robust error measure, namely
LMLS. This modification of the training algorithm is a highly cited technique
[1–3, 6] and this is why we chose to use it. The LMLS error is then defined as:

ELMLS(w) =

n∑
k=1

m∑
i=1

log(1 +
1

2
rki

2(w)), (1)

where rki = (yki(w) − tki) is the error of i-th output for the k-th training set
element, n is the size of the training set and m is the number of network outputs
(see fig. 1-left).

Our experiments were performed also with the mean absolute error (MAE)
function. This well-known error formula can be also derived from robust M-
estimators. As it was demonstrated in [3], the MAE criterion is probably the
most effective of all constant error functions, when applied to training data with
artificially introduced outliers. We define mean absolute error as:

EMAE(w) =

n∑
k=1

m∑
i=1

|rki(w)|. (2)

2.2 Median Input Function

An approach to MLP network training using the median neuron input function
(MIF) was proposed in [22]. In such networks summation of weighted input
signals is replaced with their median. When the summation is replaced by more
robust operation, such as median, the neuron output becomes less sensitive to
the changes in the input (neuron input, or input weights). Hence, the MIF is
not a direct method to make the training process more robust to outliers but it
enables the MLP to build a more general model.

Then we can define the MIF neuron output as:

yout = f(med{wixi}Ni=1), (3)

where f(·) denotes neuron transfer function (e.g. sigmoid or linear), xj are neuron
inputs, wi is the i-th input weight and N denotes input size. However, there exist
several problems concerning practical use of MIF networks. It is clearly evident

Improving MLP Neural Network Performance by Noise Reduction 143

that calculating MIF output is computationally more expensive than in the case
of simple sum. Moreover, the input function given by (3) makes the network error
function non-differentiable, so it cannot be simply trained with gradient-based
methods. So for that purpose in [22] an approximated algorithm, based on the
gradient for a simple sum, was described. This approach can be applied also for
non-differentiable error performance based on the median of residuals [24].

Another problem with a MIF is that when the network is trained on regression
tasks, the model built by the network may not react to single or small changes
in the dataset. For that reason we combine the median input (which provides
the outlier-robust part) with the sum (which provides high sensibility), defining
a new input function as:

yout = f(δmed{wixi}Ni=1 + (1− δ)
N∑
i=1

wixi), (4)

where 0 < δ < 1 determines the median influence on neuron input function.
We experimentally determined that the optimal range of δ for most datasets is
between 0.6 and 0.9. The learning process was not sensible to little changes of δ
within this range, so in the experiments we used δ = 0.75.

3 Outlier Reduction

3.1 Instance Selection

The reasons for reducing the number of instances in the training set include:
noise reduction by elimination outliers, reducing the data set size and sometimes
improving generalization by eliminating instances that are too similar to each
other, faster training of the model an a smaller dataset and faster prediction in of
the model, especially in the case of lazy-learning algorithms, as k-NN. Thus the
aim of the instance selection algorithms can be either noise reduction, as in the
case of the Edited Nearest Neighbor algorithm (ENN) [27] or data compression,
as in the case of the Condensed Nearest Neighbor rule (CNN) [10] or both. In this
work we focus on the first area: noise reduction. Although in practical applications
preliminary attribute selection is also beneficial [7] (irrelevant attributes may
produce false positive signals in outlier detection algorithms), we do not discuss
the aspect here for the sake of focusing on the main topic this work.

A large survey including almost 70 different algorithms of instance selection
for classification tasks can be found in [25]. The instance selection issue for
regression tasks is much more complex. In classification tasks only the boundaries
between classes must be determined, while in regression tasks the output value
must be assessed at each point of the input space. Moreover, in classification tasks
there are at most several different classes, while in regression tasks, the output
of the system is continuous, so there are an unlimited number of possible values
to be predicted by the system. The decision about rejection of a given vector in
classification tasks can be made based on a right or wrong classification of the
vector. In regression problems, rather a threshold defining the difference between

144 M. Kordos and A. Rusiecki

the predicted and the actual value should be set. Determining the threshold
(which is rather a function than a constant value) is an important point. Another
issue is the measure of the quality of the model, which in classification tasks is
very straightforward (classification accuracy), while in regression tasks, it can
be defined in several ways. In practical solutions not always the simple error
definitions as the MSE (mean square error) work best [14], because also the
cost of the error must be taken into account. Depending on a given application,
the cost can be higher in different areas of the output (in a similar way as cost
matrix in classification tasks) and can depend on the error value. Because of the
challenges, there were very few approaches in the literature to instance selection
for regression problems. Moreover, the approaches were verified only on artificial
datasets generated especially for the purpose of testing the algorithms. Zhang [28]
presented a method to select the input vectors while calculating the output with
k-NN. Tolvi [26] presented a genetic algorithm to perform feature and instance
selection for linear regression models. In their works Guillen et al. [8] discussed
the concept of mutual information used for selection of prototypes in regression
problems.

Algorithm 1 regENN algorithm
Require: T
m← sizeof(T);
for i = 1 . . .m do
Ȳ (xi) =NN((T \ xi),xi);
S ← Model(T,xi)
θ = α · std (Y (XS))
if

∣∣Y (xi)− Ȳ (xi)
∣∣ > θ then

T← T \ xi

end if
end for
P← T
return P

For the purpose of noise reduction we will use the ENN (Edited Nearest
Neighbor) algorithm [27] and its version for the regression tasks - regENN. The
main idea of the ENN algorithm is to remove a given instance if its class is
different than the majority class of its neighbors. ENN starts with the whole
original training set T. Each instance, which is wrongly classified by its k nearest
neighbors is removed from the dataset, as it is supposed to be an outlier. In
repeated ENN, the process of ENN is iteratively repeated as long as there are
any instances wrongly classified. In all k-NN algorithm, the ENN is repeated for
all k from k = 1 to kmax. In [13] we proposed an extension of several instance
selection algorithms for regression tasks. We shortly describe below the ENN
algorithm for regression tasks - regENN.

Improving MLP Neural Network Performance by Noise Reduction 145

To adjust the ENN algorithms to regression tasks the wrong/correct classifi-
cation decision is replaced with a distance measure and a similarity threshold,
to decide if a given vector can be considered as similar to its neighbors. We use
a weighted k-NN with k = 9, where the weight wi exponentially decreases with
the distance di between the given vector and its i-th neighbor xi. The predicted
output y is given by eq. 1.

y =

∑k
i=1 wiyi∑k
i=1 wi

(5)

where wi = 2−0.2di . We use Euclidean distance measure and a threshold Θ,
which expresses the maximum difference between the output values of two vectors
to consider them similar. Using Θ proportional to the standard deviation of k
nearest neighbors of the vector xi reflects the speed of changes of the output
around xi and allows adjusting the threshold to that local landscape, what, as
the experiments showed, allows for obtaining higher compression of the dataset.
As the regression model to predict the output Y(xi) we use k-NN with k = 9
as the Model(T,xi) (k = 9 usually produced good results). In case of regression
we experimentally evaluated the optimal Θ and we used Θ equal to 5 standard
deviations of the 9 nearest neighbors for RegENN.

3.2 Anomaly Detection

We used the ENN and regENN algorithms to reject the outliers prior to the
network training. Here we describe an algorithm based on a k-NN Global Anomaly
Score algorithm (k-NN GAS), which we use to assess the degree to which a given
instance is an outlier prior to the network training and then remain all the
instances in the training set, but differentiate the way they are included in the
training. The k-NN Global Anomaly Score algorithm calculates the anomaly
score based on the k nearest neighbors implementation. The outlier score of an
instance is the average distance between the instance and its k nearest neighbors.
In the experiments we use k = 9 and Euclidean distance measure. The higher
the outlier score the more anomalous the instance is. However, for the purpose
of labeled data, we had to extend this score, including for the calculation the
distance in the input space dx and the distance in the output space dy. In the
case of classification we add one to dy for each neighbor of a different class and
zero for each neighbor of the same class. We define the modified anomaly score
Asc as:

Asc = dy/dx (6)

Then we assume that the higher the anomaly score is, the more likely the
instance is to be an outlier and the less influence it should have on the network
training. We obtain this by dividing the error the network makes during the

146 M. Kordos and A. Rusiecki

training on each instance by a greater value if the instance anomaly score for the
instance is higher (see fig. 1-right):

Error =

{
Error/A2

sc if Asc > αmedian(Asc)

Error/(αmedian(Asc)) otherwise
(7)

Where α is a parameter. In the experiments we used α = 1 This modification
(considering also distance in the output space) of the k-NN global anomaly score
incorporates the idea of the local density of Local Outlier Probability detection
algorithm (LOOP). LOOP, contrary to k-NN global anomaly score, includes only
the local density of the points in the hyperspace. If a density measured by the
number of points in a hypersphere of a certain radius, where the given point is in
the center of the hypersphere, is much smaller then inside hypersheres centered
upon k-neighbors of that point, then the point is considered an outlier. The
resulting values are scaled to a value range of (0;1). The higher the value the
more anomalous the instance is. A survey of outlier detection methods can be
found in [12].

Fig. 1. Letf: The square (A) and the LMLS (B) error function. Right: The square error
function used for non-outliers (A), for a weak outlier (B) and for a strong outlier (C).

4 Experimental Comparison

4.1 Datasets

It is worth noticing that all the considered datasets were not artificially con-
taminated. We did not introduce artificial outliers, testing the algorithms on
the real data. We performed the experiments on eight datasets. First all the
datasets were standardized so that the mean value of each attribute is zero and
the standard deviation is one to make comparison of the results easier. We used
four classification and four regression datasets. Six datasets come from the UCI
Machine Learning Repository [18]: Iris (3 classes, 4 attributes, 150 instances),
Diabetes (2 classes, attr., inst.), Glass (5 classes, attr., inst.), Ionosphere (2

Improving MLP Neural Network Performance by Noise Reduction 147

classes, attr., inst.), Concrete Compression Strength (regression, 7 attributes,
1030 instances), Crime and Communities (regression, 7 attr., 320 inst.). Two
datasets comes from a metallurgical industry. The purpose of the SteelC dataset
(regression, 14 attr., 2384 inst.) is to predict the amount of carbon that must be
added in the steel-making process, given various chemical and physical properties
of the liquid steel in the furnace. The purpose of the SteelT dataset (regression,
11 attr., 7401 inst.) is to predict the actual temperature of the liquid steel given
a set of physical values, as temperature in various points on the surface of the
furnace, the energy delivered to the process and others (directly measuring the
temperature requires some disruptions of the steel-making process making it
longer and more expensive).

4.2 Experimental Setup

We implemented the algorithms in C# and Matlab. The source code and datasets
used in the experiments can be downloaded from [16]. The whole process in
different configurations was run in 10-fold crossvalidation loops. To be able to
compare the results, we always measure and raport in the table the MSE error on
the test sets, no matter which error function was used for the network training.
Also the MLP architecture was constant (the same for each training method) for
a given dataset. We used 5 hidden neurons for iris, diabetes, glass, steelC, and
crime, and 6 hidden neurons for the ionosphere, steelT and concrete.

4.3 Modification of the Network Parameters with Gradient-based
learning

In our experiments we decided to apply two general training frameworks: gradient-
based learning for modified network parameters (different error and neuron input
functions), and non-gradient VSS method for the rest of the algorithms. Tested
error functions included LMLS and MAE error measures (equations 1 and 2),
used as MLP training criteria. We used also MIF (3), and MedSum (4) neuron
inputs. For the case of MedSum, we assumed equal participation of both input
functions, setting δ = 0.5. The results of such modified networks were compared
to traditional approach: the MSE error function and simple weighted sum as
neuron input.

For the modified error functions we could not use one of the most popular
methods, namely, Levenberg-Marquardt algorithm, which is dedicated to the
MSE. Moreover, as it was mentioned in Section 2.2, the MIF nets cannot be
trained by regular gradient methods, so following [24, 22] we decided to apply
resilient backpropagation (Rprop) algorithm [21].

Analyzing the results obtained for these methods, we cannot definitively
decide that there is a single method, which outperforms other approaches. The
standard MSE network is the best between gradient-based methods only for one
dataset (steelC), similarly MIF (ionosphere), whereas MAE, LMLS, and MedSum
are the winners for two datasets each. (As mentioned earlier we compared the
MSE on the test sets, no matter which error function was used for network

148 M. Kordos and A. Rusiecki

training.) The performances of the tested approaches differ, depending on the
training data sets. Only pure MIF strategy, because of its discontinuity, often
worsen the results. In general, these algorithms seem to be more efficient, than
outlier reduction methods, for classification tasks, and less accurate for regression
problems.

4.4 Outlier Reduction with Nongradient-based learning

The training algorithm we used to test the outlier reduction-based method was
a non-gradient based VSS (Variable Step Search Algorithm). The idea of the
VSS algorithm is to make advantage of the properties of MLP network error
surface in the weight space, on which the training trajectory is situated, that
it is more likely that each training epoch the trajectory direction will be only
slightly adjusted that totally changed and therefore the VSS algorithm makes
guesses about the optimal modification of each neuron weights in each epoch and
then the guesses are adjusted as needed. Details of the algorithm can be found in
[15]. The VSS algorithm was also used to test the coexistence of outlier reduction
methods and the MedSum function. We used the same network architectures as
for the Rprop training and about 12 training epochs for each dataset. We are
going to join two our programs in one and use only one training method in the
future experiments. However, to obtain a clear comparison between the methods
tested with Rprop and with VSS, the exact number of epochs was adjusted so
that the crossvalidation accuracy on the standard network trained with Rprop
and VSS would be the same.

Looking at the results obtained for these methods, we can observe some regu-
larity. First, the ENN usually did not improve the results with the classification
problems, even more the results were worse. This can be explained by the fact,
that the instances, which were rejected by ENN were in most cases situated
close to the decision boundaries and thus removing them made determining the
class boundaries less precise. It would probably work better with very noisy
data, where it would reject more outliers that vectors situated close to class
boundaries. In case of regression the regENN algorithm can be adjusted with
the Θ parameter to reject the optimal number of outliers (if the error increases
we increase Θ, till the error stop increasing), so it does not cause error increase.
However it decreased the error only in two out of four cases. The modified k-NN
GAS algorithm adjusts the error measure individually to each training vector.
Because it can be adjusted with the α parameter it also did not worsen the
results, but it improved them in all but two cases. Joining the modified k-NN
GAS algorithm with the MedSum neuron input function proved to work best.
The results were further improved in six out of eight cases. This can be explained
by the fact that when to the summation in the neuron function a more stable
operation, such as median is added, the neuron output becomes less sensitive to
perturbances in the data.

Improving MLP Neural Network Performance by Noise Reduction 149

Table 1. Experimental results for classification problems - classification accuracy in
10-fold crossvalidation (higher is better)

algorithm iris diabetes glass ionosphere
MSE 0.963±0.038 0.765±0.046 0.670±0.094 0.911±0.051
LMLS 0.971±0.055 0.773±0.044 0.691±0.089 0.899±0.083
MAE 0.951±0.063 0.784±0.052 0.592±0.082 0.828±0.061
MIF 0.940±0.095 0.695±0.061 0.605±0.102 0.950±0.048
MedSum 0.956±0.058 0.760±0.037 0.696±0.104 0.922±0.060
ENN 0.960±0.040 0.765±0.043 0.614±0.066 0.910±0.059
k-NN GAS 0.974±0.045 0.775±0.031 0.674±0.074 0.911±0.029
MedSum + k-NN GAS 0.967±0.032 0.764±0.047 0.684±0.046 0.917±0.053

Table 2. Experimental results for regression problems - MSE in 10-fold crossvalidation
(lower is better)

algorithm steelC steelT concrete crime
MSE 0.031±0.013 0.576±0.111 0.798±0.250 0.343±0.062
LMLS 0.033±0.019 0.551±0.072 0.857±0.296 0.345±0.101
MAE 0.038±0.013 0.560±0.082 0.969±0.358 0.318±0.109
MIF 0.070±0.018 0.844±0.070 0.869±0.267 0.341±0.060
MedSum 0.035±0.015 0.574±0.113 0.794±0.321 0.338±0.080
regENN 0.032±0.010 0.576±0.111 0.778±0.256 0.341±0.067
k-NN GAS 0.031±0.018 0.541±0.097 0.778±0.251 0.341±0.060
MedSum + k-NN GAS 0.028±0.013 0.526±0.092 0.764±0.211 0.336±0.073

5 Conclusions

We examined several methods of improving the performance of MLP neural
networks by outlier elimination and compare them experimentally on several
classification and regression tasks. The examined method included: pre-training
outlier elimination, use of different error measures during network training,
replacing the weighed input sum with weighed median in the neuron input
functions and various combinations of them.

The obtained results are very interesting. There is an additional cost of
calculating the median equal to the quicksort algorithm of sorting the arrays of
the dimension of the number of instances in the training set. Especially joining
the two groups of methods in one network training, allowed for the best error
reduction, especially in regression problems. In most cases, modified MLP training
methods outperformed traditional MSE approach, however the choice of the best
algorithm can be merely indicative. Especially for the regression problems most
of the best results were obtained for our novel hybrid algorithm, joining k-NN
GAS with MedSum neuron input. This approach can be considered as effective
tool to improve the MLP performance on real-life problems.

150 M. Kordos and A. Rusiecki

References

1. Chen, D., Jain, R.: A robust backpropagation learning algorithm for function
approximation. Neural Networks, IEEE Transactions on 5(3), 467–479 (1994)

2. Chuang, C.C., Su, S.F., Hsiao, C.C.: The annealing robust backpropagation (arbp)
learning algorithm. Neural Networks, IEEE Transactions on 11(5), 1067–1077 (2000)

3. El-Melegy, M., Essai, M., Ali, A.: Robust training of artificial feedforward neural
networks. In: Hassanien, A.E., Abraham, A., Vasilakos, A., Pedrycz, W. (eds.)
Foundations of Computational, Intelligence Volume 1, Studies in Computational
Intelligence, vol. 201, pp. 217–242. Springer Berlin Heidelberg (2009), http://dx.
doi.org/10.1007/978-3-642-01082-8_9

4. El-Melegy, M.: Random sampler m-estimator algorithm for robust function approx-
imation via feed-forward neural networks. In: Neural Networks (IJCNN), The 2011
International Joint Conference on. pp. 3134–3140 (2011)

5. El-Melegy, M.: Ransac algorithm with sequential probability ratio test for robust
training of feed-forward neural networks. In: Neural Networks (IJCNN), The 2011
International Joint Conference on. pp. 3256–3263 (2011)

6. El-Melegy, M.: Random sampler m-estimator algorithm with sequential probability
ratio test for robust function approximation via feed-forward neural networks.
Neural Networks and Learning Systems, IEEE Transactions on 24(7), 1074–1085
(2013)

7. Golak, S., Burchart-Korol, D., Czaplicka-Kolarz, K., Wieczorek, T.: Application of
neural network for the prediction of eco-efficiency. In: Liu, D., Zhang, H., Polycarpou,
M., Alippi, C., He, H. (eds.) Advances in Neural Networks – ISNN 2011, Lecture
Notes in Computer Science, vol. 6677, pp. 380–387. Springer Berlin Heidelberg
(2011), http://dx.doi.org/10.1007/978-3-642-21111-9_43

8. Guillen, A.: Applying mutual information for prototype or instance selection in
regression problems. In: ESANN 2009 (2009)

9. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics:
The Approach Based on Influence Functions (Wiley Series in Probability and
Statistics). Wiley-Interscience, New York, revised edn. (Apr 2005), http://www.
worldcat.org/isbn/0471735779

10. Hart, P.: The condensed nearest neighbor rule (corresp.). Information Theory, IEEE
Transactions on 14(3), 515–516 (1968)

11. Huber, P.J.: Robust Statistics. Wiley Series in Probability and Statistics, Wiley-
Interscience (1981), http://www.worldcat.org/isbn/0471418056

12. I., B.G.: Outlier detection. Kluwer Academic Publishers (2005)
13. Kordos, M., Białka, S., Blachnik, M.: Instance selection in logical rule extraction for

regression problems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz,
R., Zadeh, L., Zurada, J. (eds.) Artificial Intelligence and Soft Computing, Lecture
Notes in Computer Science, vol. 7895, pp. 167–175. Springer Berlin Heidelberg
(2013), http://dx.doi.org/10.1007/978-3-642-38610-7_16

14. Kordos, M., Blachnik, M., Wieczorek, T.: Temperature prediction in electric arc
furnace with neural network tree. In: Honkela, T., Duch, W., Girolami, M., Kaski,
S. (eds.) Artificial Neural Networks and Machine Learning – ICANN 2011, Lecture
Notes in Computer Science, vol. 6792, pp. 71–78. Springer Berlin Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-21738-8_10

15. Kordos, M., Duch, W.: Variable step search algorithm for feedforward networks.
Neurocomputing 71(13–15), 2470 – 2480 (2008), http://www.sciencedirect.com/
science/article/pii/S0925231208002099

Improving MLP Neural Network Performance by Noise Reduction 151

16. Kordos, M.: source code and datasets used in the experiments (2013), http://www.
ath.bielsko.pl/~mkordos/tpnc2013.html

17. Liano, K.: Robust error measure for supervised neural network learning with outliers.
Neural Networks, IEEE Transactions on 7(1), 246–250 (1996)

18. Merz, C., Murphy, P.: Uci repository of machine learning databases (2013), http:
//www.ics.uci.edu/mlearn/MLRepository.html

19. Olive, D.J., Hawkins, D.M.: Robustifying robust estimators (2007)
20. Pernďż˝a-Espinoza, A.V., Ordieres-Merďż˝, J.B., de Pisďż˝n, F.J.M., Gonzďż˝lez-

Marcos, A.: Tao-robust backpropagation learning algorithm. Neural Networks
18(2), 191 – 204 (2005), http://www.sciencedirect.com/science/article/pii/
S0893608004002345

21. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: the rprop algorithm. In: Neural Networks, 1993., IEEE International
Conference on. pp. 586–591 vol.1 (1993)

22. Rusiecki, A.: Fault tolerant feedforward neural network with median neuron input
function. Electronics Letters 41(10), 603–605 (2005)

23. Rusiecki, A.: Robust lts backpropagation learning algorithm. In: Sandoval, F.,
Prieto, A., Cabestany, J., Grana, M. (eds.) Computational and Ambient Intelli-
gence, Lecture Notes in Computer Science, vol. 4507, pp. 102–109. Springer Berlin
Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-73007-1_13

24. Rusiecki, A.: Robust learning algorithm based on iterative least median of squares.
Neural Processing Letters 36(2), 145–160 (2012), http://dx.doi.org/10.1007/
s11063-012-9227-z

25. Salvador, G., Derrac, J., Ramon, C.: Prototype selection for nearest neighbor clas-
sification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis
and Machine Intelligence 34, 417–435 (2012)

26. Tolvi, J.: Genetic algorithms for outlier detection and variable selection in linear
regression models. Soft Computing 8, 527–533 (2004)

27. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
Systems, Man and Cybernetics, IEEE Transactions on SMC-2(3), 408–421 (1972)

28. Zhang, J.: Intelligent selection of instances for prediction functions in lazy learning
algorithms. Artifcial Intelligence Review 11, 175–191 (1997)

