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Abstract. Reduced Set SVMs (RS-SVM) are a group of methods that simplify
the internal structure of SVM models, while keeping the SVMs’ decision bound-
aries as similar as possible to the original ones. RS-SVMs are very useful in
reducing computational complexity of the original models. They accelerate the
decision process by reducing the number of support vectors. They are especially
important for large datasets, when lots of support vectors are selected. They also
can be very useful for understanding the internal structure of SVM models by
the use of prototype-based rules. This paper presents a new method based on the
modified version of the LVQ algorithm called WLVQ, which combines both of
the objectives: computational complexity reduction and generation of prototype-
based rules.
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1 Introduction

One of the problems faced by support vector machines (SVM) is the speed of the predic-
tion process. This problem is especially important for large datasets and online predic-
tion problems. In such cases usually a large number of support vectors (SV) is chosen,
what increases the time required to calculate the kernel matrix and consequently the
system response. This problem may be overcome by reduction the number of SV and
at the same time preserving original SVM’s decision borders.

Reducing the number of SVs may be also beneficial to understand the data proper-
ties reflected in the decision boundaries of the SVM model. As we have shown in [1]
when the number of SVs gets dramatically reduced in such a way that the prototype
positions represent groups of similar instances, the SVM model can be represented as
a set of Prototype Based-Rules (P-Rules) [2]. In this approach each SV is treated as a
prototype and associated with its similarity or distance function.

Summarizing, there are many benefits that can be obtained from reducing the num-
ber of support vectors. There are different techniques that can be used to achieve that
goal:

1. Removing some of the original SVs that are linearly dependent leaving other SVs
intact [3]

2. Applying the “Reduced Set" approach where new support vectors are selected or
constructed anywhere in the input space (not necessarily as some of the training
samples)[4, 5];



3. Modifying the cost function of the original SVM [6, 7].

The first approach is very useful, because it does not modify the decision boundary of
the SVM classifier, but only reduces its computational complexity. This method usually
allows reducing the number of support vector by few or more percents. However, this
in many cases is not sufficient, so other techniques have to be used, and these two other
groups are examples of the possible solutions.

The second method is based on constructing new set of SVs that is much smaller
then the set obtained during the SVM training, but it preserves the shape of the decision
boundary and keeps it as similar to the original one as possible. That approach would
be further discussed in the next section (2). The last approach is based on reformulating
the cost function of the SVM taking into account not only the width of the margin but
also the number of SVs.

In this paper a new “Reduced Set" method is presented (the second approach). This
method is based on the LVQ algorithm, which is modified to achieve the best possible
reconstruction of the decision boundary. The discussed Weighted LVQ algorithm, em-
bed in the prototype positions information about the shape of the decision boundary of
the SVM model. The reduced set SVM (RS-SVM) method has an important advantage
over other methods. One of the properties of the LVQ algorithm is a selection of pro-
totypes which represent clusters of similar instances that preserves class labels. Such a
property allows for better understanding of the model by the use of the P-rules concept
of model comprehensibility.

The paper is organized as follows: the next section (2) introduces the SVM training
process, and discusses the state of the art in the Reduced Set method. The section (3.1)
presents the modified version of the LVQ algorithm called Weighted-LVQ (WLVQ),
and an appropriate weighting procedure. The section (4) presents how to determine the
appropriate number of SVs. Section (5) shows numerical examples of the new reduced
set method (RS) on some artificial and real world problems. The last section (6) con-
cludes the article and draws further research directions.

2 Simplifying SVM prediction model

2.1 Introduction to SVM

The SVM is a linear discrimination model defined in the feature space z after mapping
data from the n-dimensional input space χ to this feature space ϕ(x). That can be
defined as:

Ψ =
m∑
i=1

γiϕ(xi) (1)

According to the kernel trick, it is not necessary to directly map the data into the feature
space z using the mapping function (ϕ(·)), but rather implicitly map the data using the
property of the dot product using the kernel function. The decision function in this case
is defined as:

f(x) =
m∑
i=1

γiyiK(x,xi) + b (2)



where xi are the support vectors with non-zero γi coefficients (Lagrangian multipliers),
K(x,xi) is the kernel function, and yi = C(xi) = ±1 are the class labels.

2.2 State of art of reduced set methods

The idea and the methodology of the reduced set methods was proposed by Burges in
[5]. His idea is based on reducing the number of support vectors by minimizing the
distance between the original SVM hyperplane Ψ and the hyperplane Ψ′ obtained with
the reduced set model:

d = min ||Ψ−Ψ′||2 (3)

To preserve the original decision boundary the distance should be minimized so that the
approximation of the new decision function Ψ′

Ψ′ =

m′∑
i=1

βiϕ(zi) (4)

is as close to the original Ψ as possible, satisfying the inequality m′ ≪ m, with scalar
coefficients βi, where m′ - is the reduced number of SVs.

According to the above statement, in the reduced set model the value of βi and the
positon of zi have to be determined and it can be achieved by minimization of (3) over
β and z that can be written as:

min
β,z

(d) =
m∑

i,j=1

γiγjK(xi,xj) +
m′∑

i,j=1

βiβjK(zi, zj)

−2
m∑
i=1

m′∑
j=1

βjγiK(xi, zj)

(5)

As it was shown in [5], taking the matrix notation Kzxγ = Kzzβ where γ =
[γ1, γ2, . . . , γm]T , β = [β1, β2, . . . , βm′ ]T , and Kzx is matrix of the m′×m dimensions
containing K(zi,xj) values, the solution of minimization of (5) can be written as:

β = (Kzz)
−1

Kzxγ (6)

Now the goal, which is to determine the position of vectors zj , can be solved in two
different ways. In the first solution vectors zj can be selected from the vectors xj using
one of instance selection techniques like ENN or CNN algorithms [8] or by any other
systematic search strategy. This is beneficial in terms of interpretation and comprehen-
sibility of the solutions extracted from the SVM model by using prototype based rules.
In that case each SV represents an input instance, what in many applications allows for
further in depth investigation of these selected cases. On the other hand zj vectors can
be constructed anywhere in the input space. This approach is used by the majority of al-
ready invented algorithms. For example Schölkopf et. al. has proposed a strategy based
on clustering in the feature space [4] that can be interpreted as EM iteration for the de-
termination of the center of a Gaussian cluster representing similar vectors that match
the sign of yi and γi. Another approach has been proposed by Burges [5] where the au-
thor claims that the highest drop in the distance between hyperplanes d can be achieved



for vectors z that are the eigenvectors with the highest absolute eigenvalues λ = βz2.
Another interesting method has been proposed by Kwok and Tsang [9]. The method
is based on the Multidimensional Scaling (MDS) algorithm, which transforms images
of the feature space vectors back into the input space. Prototypes derived from these
algorithms have no direct counterparts in the instances of the training set. However, the
methods based on the construction of the new SVs enable much greater reduction of the
number of the original SVs, while preserving a small distance d between hyperplanes.
Unfortunately non of described prototypes construction methods allows for data under-
standing. The prototypes obtained by these methods are not informative, not providing
any knowledge of the data structure. That deficiency may be overcome by the use of
WLVQ algorithm described in this paper.

3 Reducing number of support vectors with LVQ algorithm

3.1 Weighted LVQ algorithm

The LVQ algorithm is one of the most popular and simple neural networks that is based
on optimization of the position of codebook vectors, which are also called prototypes.
The LVQ algorithm has been applied to RBF neural networks training with very good
results [10], so it was also considered as a tool for reduced set methods.

In the original LVQ algorithm only the distance between an instance xi and the
nearest prototypes pk are taken into account when updating prototypes position. There-
fore in [11] we have introduced a new cost function that also applies external knowledge
of the data distribution:

E(P) =
1

2

m′∑
k=1

m∑
i=1

1 (xi ∈ Rk)1 (c(xi) = c(pk)) g(xi) ||xi − pk||2

−1

2

m′∑
k=1

m∑
i=1

1 (xi ∈ Rk)1 (c(xi) ̸= c(pk)) g(xi) ||xi − pk||2
(7)

where 1(L) is the switching function, which returns 1 when condition L is true, and
0 otherwise, c(x) returns class label of vector x, and Rk is the Voronoi area defined
for prototype pk. This cost function can be minimized according to p by iteratively
updating codebook positions:

pk = pk + α(j)g(xi)1 (c(xi) = c(pk)) (xi − pk)

pk = pk − α(j)g(xi)1 (c(xi) ̸= c(pk)) (xi − pk)
(8)

where the context factor g(xi) describes the external knowledge provided in order to
achieve certain properties during the training. The g(xi) value can be understood as
an instance weight that describes the significance of the instance during the training
process.



3.2 Determining weights coefficient

As described above the g(xi) function can be used to introduce external dependencies
that impose additional restrictions on the optimization process. Such dependencies may
be defined according to the shape of the decision boundary of the SVM classifier. To
achieve that aim all the vectors that are situated close to the decision boundary (2)
should have higher weight values and vectors that are far from the boundary should be
less significant to the optimization process. According to that we have defined g(xi) as:

g(xi) = 1− |tanh (σ · t (xi))| (9)

or
g(xi) = exp

(
−σ · t (xi)

2
)

(10)

where σ is a user defined constant, and t (xi) is a normalized SVM decision f (xi)
such that

t (xi) =

{
f (xi) /stdP if f (xi) > 0
f (xi) /stdN if f (xi) < 0

(11)

where stdP and stdN are normalization factors defined as stdP = std (∀xi : (f (xi) > 0)xi)
and respectively stdN = std (∀xi : (f (xi) < 0)xi)

4 Finding optimal number of support vectors

RS-SVM approach allows for significant reduction of the number of SVs. However, the
problem of determining the correct number of reduced set of SVs remains open. The
most natural solution seems to be the optimization of the distance between separating
hyperplanes (3):

E1(m
′) = ∥Ψ−Ψ′∥ = (12) m∑

i,j=1

γiγjK(xi,xj) +

m′∑
i,j=1

βiβjK(zi, zj)− 2

m∑
i=1

m′∑
j=1

βjγiK(xi, zj)

2

When facing the comprehensibility problem of the SVM model by the use of P-rules,
the cost function can be extended with an additional term αm′/m, which represents the
model complexity as a ratio of a reduced number of SVs (m′) to the original number
of SVs (m) multiplied by some constant α. This introduces a punishment into the cost
function and promotes the solution with a smaller number of SVs. Because the distance
∥Ψ −Ψ′∥ may take very high values, α may be rescaled by 1/∥Ψ−Ψ′

1∥, where Ψ′
1

is Ψ′ defined with just one SV.
Visualization of the relation between distance ∥Ψ−Ψ′∥ and the number of SVs is

presented in figure (1). The same figure shows the relation between the accuracy and
the number of SVs.

The analysis of results presented in figure (1).b shows that the performance of the
RS model can overcome the performance of the SVM model. Such situation may hap-
pen when the SVM is over-fitted, so the RS-SVM is able to detect the over-fitting con-
dition and propose a simpler model. This leads to two other cost functions defined as a
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(a) Dependence of the cost function
E1 on the logarithm of the number of
SVs
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(b) Dependence of the mean accuracy
(cost function E3) on the logarithm of
the number of SVs. Dashed line rep-
resents mean accuracy of the original
SVM

Fig. 1. Comparison of the distance (Eq. (13)) and accuracy (Eq. (14)) based cost functions for
Pima Indians diabetes data.

difference between the accuracy of the SVM and RS-SVM model,

E2(m
′) = acc(SVM) − acc(RSSVM(m’)) (13)

where acc() is the classification accuracy measured using some loss function. Because
the acc(SVM) remain constant during optimization of the number of SVs, the function
(13) can be simplified omitting the first component:

E3(m
′) = acc(RSSVM(m’)) (14)

5 Numerical examples

To verify the proposed algorithm we performed a set of numerical tests on real world
problems.

In the comparison four algorithms were compared, the original SVM model (lib-
SVM implementation), Schölkopf and Burges algorithm, both implementations were
based on the Spider toolbox for Matlab, and the WLVQ algorithm also implemented
as an operator of Spider toolbox http://www.p-rules.eu. The datasets taken
for the comparison were obtained from the UCI repository [12]. For that purpose the
most popular datasets were selected, like wisconsin brest cancer, heart disease, pima
indiens diabetes and spam base. In this experiment the number of SVs of all reduced
set methods was fixed to 20. All results were obtained with a 10-fold cross-validation
test. At the beginning the hyperparameters of the SVM model were optimized and after
the selection of the best set of parameters the RS models were generated. The obtained
results are presented in table (1)

As it can be seen, the quality of the RS-SVM method is comparable to the others.
In almost all cases the Burges algorithm achieved the smallest distance d (3) between
hyperplanes. However, this did not correlates with the best accuracy, where usually the



Table 1. Empirical comparison of SVM and three reduced set methods

Dataset
SVM Burges Schölkopf WLVQ

Accuracy #SV s Accuracy d Accuracy d Accuracy d

heart disease 84.50±5.54 130 82.84±5.95 0.500 82.50±5.59 14.39 84.18±4.43 17.02
diabetes 77.61±3.02 430 73.44±4.47 0.078 73.05±4.50 2.80 73.17±5.10 0.825
wbc 97.07±2.19 74 97.21±1.47 0.033 97.21±1.76 0.453 97.07±1.70 0.348
spam 93.84±1.09 734 93.31±1.12 17018 82.92±5.12 41810 90.02±1.64 39421

proposed algorithm based on WLVQ networks obtained the best accuracy - the closest
to the SVM model.

A very interesting results were obtained in the case when the SVM model was
incorrectly optimized and tended to over-fit the data. The results are presented in table
(2).

Table 2. Empirical comparison of over-fitting SVM and 3 reduced set methods

Dataset
SVM Burges Schölkopf WLVQ

Accuracy #SV s Accuracy Accuracy Accuracy
heart disease 75.77±8.60 107 73.05±6.36 72.07±8.72 80.47±5.43
diabetes 73.71±5.57 332 64.98±4.03 68.23±5.47 73.70±4.77
wbc 94.15±1.68 58 95.31±2.38 93.55±3.47 95.75±2.63
spam 94.15±1.68 58 95.31±2.38 93.55±3.47 95.75±2.63

From these results we can see that the accuracy of Burges and Schölkopf algorithms
have much smaller values of distance d, however their accuracy is often much worse.
That is because these two algorithms that minimize the distance d are concentrating on
the most complex and bent part of the separating hyperplane Ψ. This results with even a
stronger over-fitting. While in the WLVQ-based model the prototypes are representing
the centers of instance groups from different classes, which avoids the problem of over-
fitting.

6 Conclusions

The proposed RS-SVM algorithm based on weighted LVQ algorithm has proven highly
effective. In comparison to other methods the accuracy is of the same level. Similar re-
sults were obtained for the ∥Ψ−Ψ′∥ distance (except Burges algorithm which outper-
forms other methods). There are also other advantages of the WLVQ-based SV. During
the optimization process the LVQ codebooks are attracted to areas of high density of in-
put vectors. This makes the reduced set of SVs meaningful and useful for understanding
of relations hidden in the data, especially for the P-Rules.

An important advantage of the RS-SVM algorithm is the short time required to
recalculate the RS-SVM model. In comparison to other methods codebooks position
(SVs) are determined independently of the weights βi, so the process consists of two



serial subprocesses. In the first step the WLVQ algorithm is trained and then in the
second step the appropriate weights βi for each codebook are determined.

Our future plans include the investigation of the relation between the number of
codebooks and the accuracy of the pure WLVQ algorithm and the ∥Ψ−Ψ′∥ distance.
If such relation appears, what seems to be a correct assumption, it could be interesting
to apply the dynamic LVQ algorithm (DLVQ) to automatically optimize the number of
SVs without recalculating the β coefficients.
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