
 Neurocomputing 2470

 Variable Step Search Algorithm

 for Feedforward Networks

Mirosław Kordos and Włodzisław Duch

Abstract

A new class of search-based training algorithms for feedforward networks is introduced. These algorithms do not calculate analytical

gradients and they do not use stochastic or genetic search techniques. The forward step is performed to calculate error in response to

localized weight changes using systematic search techniques. One of the simplest variants of this type of algorithms, the Variable Step

Search (VSS) algorithm, is studied in details. The VSS search procedure changes one network parameter at a time and thus does not

impose any restrictions on the network structure or the type of transfer functions. Rough approximation to the gradient direction and the

determination of the optimal step along this direction to find the minimum of cost function are performed simultaneously. Modifying

the value of a single weight changes the signals only in a small fragment of the network, allowing for efficient calculation of

contributions to errors. Several heuristics are discussed to increase the efficiency of VSS algorithm. Tests on benchmark data show that

VSS performs not worse and sometimes even significantly better than such renown algorithms as the Levenberg-Marquardt or the

scaled conjugate gradient.

Keywords: neural networks, Multi-Layer Perceptrons, neural training algorithms, search techniques, optimization

1. Introduction

Multilayer perceptrons (MLP) are usually trained using

either analytical gradient-based algorithms with error

backpropagation or (rarely) global optimization methods.

Some of the most popular methods from the first group

include standard backpropagation (BP) [1], various versions

of RPROP [2]-[4], Quickprop [5], Levenberg-Marquardt

(LM) [6][7] and the scaled conjugate gradient (SCG) [8]

algorithms. The second group involves genetic algorithms

[9]-[11], simulated annealing [12] and its variants such as

Alopex [13], particle swarm optimization [14], tabu search

[15] and several other algorithms [16],[17].

The training time of local gradient algorithms is usually

significantly shorter than that of global methods.

Sophisticated gradient techniques based on classical

numerical analysis methods have been developed [18] and

implemented in a large number of software packages. In

theory global optimization methods should be able to find a

better solution for complex problems, but in practice despite

a lot of efforts (especially using the evolutionary computing

algorithms) empirical results showing significant advantages

of global optimization methods were difficult to obtain.

Perhaps the benchmark problems analyzed were too simple.

Applications to more difficult problems in bioinformatics

show some advantages of genetically optimized neural

networks [9]-[11]. In large parameter spaces the phenomenon

of over-searching [19] may increase the chance that global

optimization methods will find optimal solutions that for the

test data will give worse results than solutions accessible by

gradient methods. Thus extensive search may paradoxically

make the problem of model selection quite difficult.

In this paper a new class of neural training algorithms

based on local search techniques [20] is explored. The

analysis and the algorithms described here can be used for

feedforward networks of arbitrary structure, with arbitrary

transfer functions (this is in fact one of the greatest

advantages of this approach because changing transfer

functions does not require development of new formulas or

significant changes of the program). However, to be concise

we shall focus only on the standard 3-layer MLP networks

trained for data classification with logistic sigmoid transfer

function y(u) with the unit slope (=1):

1

1 exp()
y u

u

 (1)

A “staircase” approximation to logistic functions will also

be mentioned. Search-based optimization methods include

stochastic methods [21], evolutionary algorithms and local

systematic search techniques. So far algorithms based on

systematic search have been largely ignored, with only a few

papers mentioning their use in logical rule extraction from

neural networks [22][23]. Analytical gradients are calculated

assuming infinitesimal changes, but in computer

implementations of the training algorithms changes are finite

Neurocomputing

Vol. 71, Issue 13-15
August 2008

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks

2471

and fast learning requires large steps, therefore numerical

effects may degrade performance of analytical gradient

algorithms. Localized perturbations, restricted to one or two

weights are sufficient to provide numerical approximation to

gradient direction. Inspection of the real learning processes

(using also visualization techniques) led us to several

interesting conclusions [21][25], briefly summarized in the

following sections.

Remarks on gradients, search directions and search

procedures are presented in section two. Lessons learned

from experiments with search-based neural training

algorithms were used to implement a new training method,

called the Variable Step Search (VSS) algorithm. It uses a

numerical rather than analytical approach in order to find

optimal directions and step sizes in an iterative process.

Several heuristics designed to improve performance of this

algorithm are described in section three. Visualization of the

VSS learning processes is presented in section four.

Experimental results on several datasets, presented in section

five in terms of convergence properties, accuracy and speed

of calculations, are very promising. In many aspects VSS

tends to perform very well, comparing favorably to the best

neural training algorithms, such as the scaled conjugate

gradient (SCG), the Levenberg-Marquardt and the Rprop

algorithms. It is thus clear that VSS and other algorithms

based on systematic search are worth investigating. The final

section contains conclusions and remarks on the future work.

2. Gradients and search directions

In this section the background and the motivation for

introduction of the VSS algorithm is presented. Analysis and

comparison of analytical and numerical gradients is made

and several remarks on the line search techniques for MLP

training are made. Properties of the gradient directions

calculated by backpropagation-based algorithms are

discussed, and heuristics for finding optimal direction for the

next search step are introduced.

2.1. Numerical and Analytical Gradient Directions

The analytical gradient-based algorithms use an error

backpropagation mechanism to assess the gradient

component in each hidden weight direction. Assuming a

single output Y, feedforward mapping M(X;W) of the input

vector X to Y, parameterized by the weight vector W and a

standard quadratic error function [26] the formula for the

gradient of the output weights wk is:

() (;)

(;)
k k

E M
M Y

w w

W X W
X W

 (2)

The derivative of the mapping M(X;W) is expressed using

derivatives of the transfer functions and the errors made by

the network. These errors are propagated to the input layer to

calculate gradients for the remaining weights.

In the numerical gradient network training [24][25] a

single weight wk is subject to a small perturbation dw

(positive or negative) and changes of the network error in

response to this perturbation are used as a gradient

component in wk direction:

1() ([,..., ,...,]) ()k n

k

E E w w dw w E

w dw

W W
 (3)

Thus the numerical gradient method roughly coincides with

finite difference method of gradient approximation [27].

Accuracy of such calculation depends on the curvature of the

error surface. The numerical gradient direction depends on

dw, but this dependence is usually not too strong for dw in

the range 0.0020.2 with unit sigmoid slope (β=1).

 The main difference between gradients computed using

analytical and numerical formulas is seen for small gradient

values (frequently associated with the hidden weight

components at the beginning of the training). Small gradients

tend to be smaller in the analytical gradient calculations,

while the large values tend to be larger (see Fig. 1). This

tendency is stronger for larger networks with more complex

data. Numerical gradient calculates the descent directions

taking into account the error values in two points thus

examining a broader range of the error surface than

analytical gradient, so it can “predict” more precisely the

error value in a spot located at some distance from the

current point.

 In the dependence shown in Fig. 1, the analytical gradient

was calculated using Eq. 2, and the numerical gradient using

Eq. 3. The relation between analytical and numerical gradient

components is more important than the absolute value of the

components because the absolute value is always multiplied

by a certain step size during network training. Therefore the

product of the step size and the component value is the most

important quantity. The gradient components shown in Fig. 1

are rescaled so that the lengths of the analytical and

numerical gradient vector are the same.

 Interesting empirical observations on numerical and

analytical gradients have been made during training on

several datasets. A finite step along numerical gradient

direction leads in most cases to faster decrease of the error

than the same step along analytical gradient direction. The

difference is even stronger if minimization along the

direction determined by backpropagation and numerical

gradient is done.

 Neurocomputing 2472

Fig. 1. A comparison of analytically (BP) and numerically (NG, with

dw=0.02) determined gradient components in all the weight directions for

the thyroid dataset at the first training epoch using logistics sigmoid transfer

functions with unit slope (=1). (21 inputs, 4 hidden, 3 outputs, 21-4-3

network).

 Although the numerical gradient is still not the optimal

direction of the learning trajectory, it tends to be much closer

to it than the analytical gradient (see the next subsection for

detailed discussion).

Backpropagation frequently gets stuck in apparent local

minima or plateaus without reaching low values of the error

[29]. The importance of local minima has been controversial

for a long time [28]. Contrary to the common belief, local

minima may not be a real problem in neural training; ill-

conditioning and saddle points have much more direct effect

that has important influence on the performance of training

algorithms [30]. Backpropagation training is frequently stuck

only in the apparent local minima, and in many cases

switching to another training algorithm (for example a

numerical gradient) leads to the further decrease of the error

and to the final convergence. Analytical gradient algorithms

get stuck because gradients on flat surfaces, flat saddle points

calculated in analytical way may become very small

[31][32], while a finite step numerical gradient is larger and

may lead to the lower areas on the error surface. Sometimes

the trajectory may be trapped in a highly situated ravine on

the error surface and then also the numerical gradient method

is unable to converge. Visualization of the error surface (see

sec. IV) shows frequently such situations, but the local

minima in form of “craters” are never observed. In summary,

there are good reasons to use numerical, instead of analytical,

gradients.

2.2. Gradient Direction and the Optimal Next Step Direction

Gradient-based training methods make initially rapid

progress, slowing significantly near the end of the training.

Fig. 5 shows an MLP error surface projected on the first two

PCA directions in the weight space (two directions capture

typically over 95% of all variance). The error surface

becomes almost flat in the areas that are located further from

the starting point (initialization with small weights is

assumed), and therefore reached by the learning trajectory at

the final stage of the training. The analysis of such surfaces

and one-dimensional crossections along single weight

directions at the beginning and near the end of the training

shows (Fig. 2) some interesting properties of MLP error

surfaces. The hidden weights have in general rather low

gradients at the beginning and at the end of the training,

although their values change a lot; the output weights grow

faster and have large gradients around minima, with large flat

highly situated plateaus far from optimal values. This

suggests deep ravines in the error function landscape.

Fig. 2. Typical error surface crossections in the direction of: (1) hidden

weight at the beginning of the training; (2) output weight at the beginning of

the training, (3) output weight at the end of the training, (4) hidden weight at

the end of the training.

In any case gradient direction is not the optimal step

direction. The RPROP algorithm that takes into account only

the sign of a derivative instead of the gradient performs

usually not worse than BP, and frequently even better

[2],[26]. Moreover, there exists a certain similarity between

Rprop and VSS: both use individual update steps for each

weight.

2.3. Gradients and Optimal Directions

It is instructive to assess the statistical relation between

the size of the gradient component dE(w) in the direction of

weight w and the distance mw from the point W to the

minimum of the error function in the direction of weight w

(see Fig. 3). The error surface sections in a particular weight

direction may differ significantly, although the curves shown

in Fig. 2 are rather typical for most weights. We use

numerical gradient in this section. The disproportion between

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks

2473

the analytical gradient component and the optimal step size is

even bigger than for numerical gradient, because in this case

it is the product of relations shown in Fig. 1 and in Fig. 3.

Fig. 3. Dependence between the numerical gradient component dE(w) and

the distance mw from the actual point to the minimum error in a given
weight direction in the first training epoch (Iris 4-4-3 network).

Initially the minima for the output weights are located

near the current point W, but for the hidden weights they are

on average much further (Fig. 3). The error surface landscape

changes as the training progresses. However, the changes are

visible mostly in the hidden weight directions. Thus, at the

end of the training the relations shown in Fig. 3 will look

very similar for both the hidden and output weights (as in

Fig. 2, lower curves).

Heuristic approximation of the relation between dE(w)

and the m(w) distance in the successive training epochs may

be used to speed up search of the minimum. An example of

such approximation for logistics sigmoid transfer function is

given by the equation below.

 (1)

 1() sign () 1 exp cm w dE w a bt dE

 1 maxmin () ,min ,5 mdE dE w dE dE (4)

The first factor takes care of the sign of the gradient. The

second factor (where t denotes the epoch number) expresses

the fact that during training the error surface sections around

the actual learning trajectory in the direction of hidden

weights are asymptotically getting more and more similar to

the sections in the direction of output weights (Fig. 2). For

that reason a=0 for output weights, while for hidden weights

this factor is expressed by an exponential function, which

asymptotically approaches 1. The third factor (dE1
C
)

approximates the dependence of dE(w) on the distance m(w)

in a given epoch for a given layer. Parameters dE1, a and b

are determined fitting the function in Eq. 4 using the least

mean square method on the data points (network weight

values after each epoch) obtained while training the networks

using the datasets described in section V with the numerical

gradient method. dEmax is the greatest and dEm is the mean of

the error changes while changing the weight values by dw to

determine the descent direction. The power c(0,1) is a

constant usually fixed at c =0.5, a=0 for the output layer,

a[10,20] range for the hidden layer, and b=[0.10,0.20]

range.

Our aim at this point is to illustrate the situation rather

than to find the best approximation, thus the purpose of Eq. 4

is to demonstrate that using the statistics from several

network trainings such approximation may be defined,

although it may not be an optimal approximation.

Nevertheless, in computational experiments described below

the use of Eq. 4 to calculate distance to the expected

minimum contributed to an average reduction of the number

of the training epochs required for convergence by 30-60%

with both numerical gradient and with analytical gradients in

standard backpropagation procedure.

The VSS algorithm, introduced in the next section, solves

the problem of finding the trajectory direction in a different

way, although still based on conclusions of the reasoning

presented here.

2.4. In-Place and Progressive Search

The numerical gradient training [25] was based on the “in-

place search”: all weight changes were examined relatively

to the current set of weights (point on the error surface), and

then a single step was made searching for a minimum along

the gradient direction. Thus numerical gradient simply

replaced the analytical gradient in the backpropagation

procedure.

The simplest search for the minimum of a function is

based on progressive line search. Minimum is found

separately for one parameter (using any line search method),

and the process is repeated starting from the new point for

the remaining parameters, as used in algorithms that search

along the coordinate directions [33]. Parameters may be

randomly reordered before each iteration. Although more

sophisticated ways to choose directions may be introduced,

for example using the conjugate gradient directions [33], it is

worth trying the simplest approach first (i.e. moving along

the directions of the coordinate axes). In fact moving along

the individual parameter directions is also done in the first

iteration of the Powell’s quadratically convergent method

[33], an iteration that usually leads to the largest reduction of

the error. The search method used in the VSS algorithm is

based on repetitive application of this first iteration.

VSS is a generalization of the simple search method that

adds or subtracts from each parameter a fixed dw value,

accepting only those changes that lead to the decrease of

 Neurocomputing 2474

errors. To avoid local minima stochastic algorithms, such

as simulated annealing [12], Alopex [13], and several other

global optimisation algorithms, accept (using specific

probability distribution) changes that lead to an increase of

the error. The VSS algorithm does not use this approach,

relaying on the method of exploring the error surface that

allows for effective MLP training, as long as the next point is

within the same ravine of the error surface (Fig.5). Therefore

in the “variable step search” (VSS) training algorithm the

step size in each direction is determined by the line search.

Progressive search method updates the weight vector W

immediately after the minimum along wk direction is found,

thus making as many steps (micro-iterations) in orthogonal

directions during one iteration (training epoch) as the number

of weights Nw. After each micro-iteration the weight vector

W is changed, and thus also the error landscape and the value

of the function E(W) used for the next step. After the whole

epoch the error function will undergo Nw modifications,

which is in contrast to the standard backpropagation and

other analytical approaches, where changes to all W

components are made under the assumption of using the

same E(W).

The basic VSS algorithm is very simple and is outlined in

the following pseudo code:

for i=1 to NumberOfEpochs do

 for j=1 to NumberOfWeights do

 find dwj that minimizes E(i,wj+dwj);

 wj wj+dwj;

 end

 if E < Emin

 break;

 end

end

Emin is the error value at which the training stops; selecting

the stopping criterion is not specific to VSS and can be done

in the same way as for other MLP training algorithms. The

method of calculating the error value E is shown in Fig. 4.

 Any line search minimization method can be used to find

the optimal dw, and the mean-square error (MSE) or any

other error measure [26][31] may be used as optimization

criterion. However, to increase the computational efficiency

of VSS algorithm special methods to compute dw and

E(e,w+dw) are proposed below.

3. Reduction of Computational Cost

There are many general methods that reduce

computational costs of neural training, such as weight

pruning [26], use of support vectors for neural training [34],

statistical sampling for large training sets, etc. Because these

methods can be used with almost any neural training

algorithm they will not be discussed here. Instead, three

methods specific to the VSS algorithm are considered: signal

table for organizing updates of error calculations, non-

differentiable transfer functions that may be computed faster

than continuous sigmoidal functions and some heuristics to

speed up the line search for a minimum in a given weight

direction.

3.1. Signal Table

Because only one weight is changed at a time the input

signals do not need to be propagated through the entire

network to calculate the error. Propagation through the

fragment of the network in which the signals may change as

a result of the weight update is sufficient. The remaining

signals incoming to all neurons of hidden and output layers

are remembered for each training vector in an array called

the “signal table”. After a single weight is changed only the

appropriate entries in the signal table are updated. The MSE

error of each output neuron is also remembered and do not

need to be recalculated again if a weight of another output

neuron is changed.

At the beginning of the training the signals are propagated

through the entire network (this is done only one time), thus

filling in the signal table entries. The use of the signal table

significantly shortens training time enabling effective

training of larger networks. Table 1 contains the formulas for

the number of arithmetical operations with and without the

signal table. The formulas are based on the analysis of the

signal flow. For example in the first formula, No(Nh+1) is the

total number of weights in the output layer, Nh(Ni+1) in the

hidden layer and (No+Nh) is the total number of activation

functions in the network. Thus, calculating the network error

after every single weight change the activation function

would have to be calculated that many times.

The dimension of the signal table is NV(No+Nh), where NV

is the number of vectors in the training set and Nh and No are

the numbers of hidden and output neurons, respectively. For

example, for a network with 30 neurons and 10,000 training

vectors, storing variables in 8 bytes (double type) the signal

table needs only 2.3 MB of memory, that is two or more

orders of magnitude less than the memory requirements for

the LM algorithm, and also less than the requirements of

SCG algorithm (see details in section five).

Table 1. The number of operations with and without the signal table required
to calculate numerical gradient direction (for one training vector). Ni, Nh, No

– number of input, hidden and output neurons.

operation type number of oper-

ations without

signal table

number of

operations with

signal table

calculating

sigmoid value

(neuron outputs)

[No(Nh+1) +

Nh(Ni +1)]

(No+Nh)

No(Nh +1) +

Nh(Ni +1)(1+No)

adding incoming

signals multi-

plied by weight

values (neuron

activations)

[Nh(Ni +1) +

No(Nh +1)]2

2[No(Nh +1)+

Nh(Ni+1)(1+ No)]

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks

2475

3.2. Staircase Transfer Functions

Calculation of the value of sigmoidal transfer functions is

quite time consuming; in our experiments it took over 8

times longer than a single multiplication (in Borland Delphi

implementation on the Athlon XP processor). Due to the

finite precision of numerical calculations in computer imple-

mentation the sigmoidal transfer functions are in fact non-

differentiable staircase functions with a very large number of

small steps. Because the VSS algorithm does not rely on

analytical gradient the transfer functions do not have to be

differentiable and an array with approximated values

implementing a staircase transfer function with lower

precision can be used, reducing the training times by more

than half without compromising accuracy. At least 20

equally spaced values of sigmoidal function have been used,

approximating the sigmoid with accuracy of 2-3 significant

digits.

The signal table can reduce the number of operations

required to calculate the weighted activation u for a large

network by several orders of magnitude, updating the

activations u in the epoch i for a single weight change wk as:

)(1,,1 ikikii wwxuu

 (5)

The number of operations required to calculate single

neuron output y(u) is reduced on average by the signal table

by less than one order of magnitude. With signal table the

staircase transfer functions additionally shortens the training

time up to several times. On the other hand without the signal

table the gain due to the staircase approximation of sigmoidal

functions is quite small, because the calculation time is

dominated by multiplications that enter activations u.

3.3. Line Search Heuristics

The search algorithm should take advantage of the MLP

error surface properties. The steepness of the error surface in

different directions varies by orders of magnitude, and the

ravines in which the MLP learning trajectories lay are

usually curved, slowly changing their directions

[35],[36],[37],[38]. Therefore one can expect that an optimal

change of weight value dw for the same weight in two

successive training cycles will not differ much, while dw for

different weights in the same training cycle may have values

that differ on orders of magnitude.

In each training cycle i the first guess of dw(w,i) for a

given weight w might be the value dw(w,i) of the weight

change in the previous training cycle. However, detailed

empirical analysis of our implementation of the line search

leads to the conclusion that for most cases convergence is

faster when smaller dw(w,i) 0.35dw(w,i) are used, in

spite of the fact that statistically the ratio dw(w,i)/dw(w,i)

is close to 1.

Fig. 4 shows a diagram for determining the change dw of

a single weight w in one training cycle i. OE (Old Error) is

the MSE error (or another error measure) before the weight

change is applied, and NE (New Error) is the error after the

weight change is applied. Parameters max_n (maximum

number of iterations), max_w (maximum allowed absolute

value of the weight) and max_d (maximum allowed change

of a weight in one training cycle) are introduced to prevent

excessive growth of the weights. These parameters are

optional and can have very large values or even be set to

infinity. Experimentally determined optimal values of other

parameters used in Fig. 4 are in the following ranges:

c1[0.3,0.4], c2[2,3], c3[0.1,0.3]. However, the

algorithm is not very sensitive to the values of these

parameters, therefore they were set to their middle values and

never changed in the experiments reported below. It should

also be stressed that the results of VSS algorithm do not

depend on these parameters; they may only influence the

speed of convergence.

Before the training starts the weights are initialized with

random values from the interval. In the first training

cycle d=d0[0.2,0.3]. Since dw(w,0)=0, for each weight w in

the first training cycle the first guess dw(w,1)=d0 is taken.

Because close to the starting (initialization) point the ravine

leading to a minimum on the error surface is rather narrow,

d0 must be sufficiently small to avoid overshooting and to

keep the trajectory within the ravine.

Another heuristics has been derived from the observation

that calculation of the minima along each weight direction to

a high precision (e.g. by repeated parabolic interpolations

where the curvature is not convex) increases the number of

the training cycles, quite opposite to the expectations.

Therefore only rough estimation of the step size dw in each

direction is made. On average determining a single weight

value in one training cycle the error in the line search

algorithm needs to be calculated only about 3 times. (If the

error does not change at the first attempt the weight value is

kept unchanged for this iteration.) It is possible to increase c1

and c2 parameters so that the error will be calculated on

average only twice, but this increases the number of training

epochs and therefore does not reduce the total computational

cost of the training.

In Fig. 4 block 3 deals with weights that did not change in

the previous training cycle. This usually means that more

precise weight tuning is needed, therefore a smaller value

d=d1·sign(w) is added to that weight, preserving the

direction but changing its value in the next training cycle.

For that reason d1 is multiplied by sign(w) to minimize

the number of operations. The error value NE is calculated in

blocks 4, 6 and 9. The functionality of block 10 is analogical

to the momentum term used in backpropagation. If

c3·(VEOE)>NEOE then the point is accepted, although

the error in the previous point could have been a bit lower,

since it is likely to bring gain in the next training cycle. VE is

 Neurocomputing 2476

the error recorded one step before OE, that is

NE=error(n), OE=error(n1), and VE=error(n2).

START

dw(w,i-1)=0

d=c1*dw(w,i-1)

NE<OE

Y

d=d1*sign(w)

NY

dw(w,i)=d

N

d= -d

NE<OE

dw(w,i)=0

N

N Y

Y

Y

N

n<max_n

|w|<max_w

|d|<max_d

n=n+1

NE<OE

1

2

4

7

3

5

6

10

8

9

n=1

n=1

c3*(VE-OE)

>NE-OEN Y

11

dw(w,i)=d

d=c2*d

d=d/c2

Fig. 4. Sketch of the Variable Step Search algorithm determining a single

weight value in one training cycle.

Many experiments aimed at estimation of the optimal

weight change sequence were performed, but various

sequences did not have significant influence on the training

efficiency. Therefore the weights are changed either in a

random order or one after another in a systematic way, first

all weights from the hidden layer, and than all weights from

the output layer, or vice versa. If the change of a given

weight does not significantly reduce the error for two

iterations the weight is frozen, and if the weight is quite

small it may be pruned.

The diagram shown in Fig. 4 presents the VSS algorithm

incorporating the best heuristics found so far. It should be

stressed that implementation of these heuristics is not

necessary for the algorithm to work, but they are useful to

increase its efficiency. Backpropagation-based algorithms

also use a number of heuristics for the same purpose

[26],[31]. Although the diagram in Fig. 4 seems to be

complicated because several conditions are checked to

incorporate various heuristics in fact implementation is quite

simple as there is no need to program complex formulas with

matrices and derivatives, as is the case for backpropagation-

based methods. The VSS algorithm applied to MLP training

proved to be quite stable, on most datasets leading to

convergence in a very few training cycles.

4. VSS Learning Progress

Principal Component Analysis (PCA) can be used to

reduce the weight space dimensionality for purpose of

learning trajectory and the error surface visualization

[24],[35]-[37]. Weight vectors W(t) at the starting point t=0,

and after each training epoch t=1..tmax, are collected in the

weight matrix W=[W(0), W(1),.. W(tmax)] with n rows and

tmax+1 columns. To determine principal components Singular

Value Decomposition (SVD) is performed on the weight

covariance matrix [33]. Each entry in the weight covariance

matrix is calculated as:

max

0max

1
() ()

t

ij i i j j

t

c W t W W t W
t

(6)

where
iW is the i-th weight mean over all tmax+1 epochs. A

subset of the training epochs may be used to focus on some

part of the learning trajectory.

For each point (c1, c2) in the PCA weight space W(c1, c2) =

c1V1 + c2V2 + W0 is defined, where W0 may be selected as

one of the points on the learning trajectory (for example the

starting point) and V1 and V2 are the unit vectors in the first

and second principal component directions. The error surface

plot (Fig. 5) shows the relative error Er(W) = E(W)/NVNC on

the vertical axis, and distances (c1, c2) in V1 and V2 directions

on the horizontal axes. NV is the number of vectors and NC is

the number of classes in the training set. For all error

functions based on the Minkovsky’s metric ||
.
|| when the

output layer transfer function is bounded by 0 and 1 the error

values are bounded from above by NVNC. Thus, the relative

error is bounded by 1. The mean square error (MSE) is the

most frequently used error measure, but replacing it with

some other error measure in the VSS algorithm is quite

trivial.

Typically the first principal component captures about

90% of the variance and the first two components contain

together more than 95% of the total variance, therefore the

plots reflect learning trajectory properties quite well.

Although restoration of the error surface from only two PCA

components is not ideal, to a significant degree projection of

the learning trajectories tend to adhere to this surface. The

beginning of a trajectory lies often over the error surface

projection and its end under (the error surface projections are

often flatter than original error surface on which the

trajectory lies). The trajectories in n-dimensional weight

space are bent, and their mean direction corresponds to the

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks

2477

direction of the error surface ravine in the PCA projection.

Nevertheless visualization of the error surfaces and

trajectories helps to understand the learning dynamics of

neural algorithms [37].

Fig. 5. Error surface and the learning trajectory of Iris (4-4-3) trained with

VSS algorithm.

Fig. 6a. Projection of the Iris (4-4-3) learning trajectory trained with VSS in

the first and second PCA direction. The cross shows the zero point in the

weight space, and short bars separate the training epochs.

Fig. 6b. Projection of the Iris (4-4-3) learning trajectory trained with VSS in

the third and fourth PCA direction. The cross shows the zero point in the

weight space, and little bars separate the training epochs.

Fig. 6a and 6b present the directions of the weight changes

in the first two PCA components during the VSS training. In

each iteration correct direction of the error function’s ravine

which leads the trajectory towards minimum is quickly found

and maintained. This figure is based on weights that have

been updated in a systematic way, starting from the hidden

weights, and ending with the output weights. The directions

change sharply in the middle of iteration, when one of the

hidden weight values is changed by a large amount, and then

near the end of the epoch, when output weights are changed.

Trajectories displayed in directions corresponding to higher

PCA components seem to be quite chaotic (Fig. 6b) and do

not carry much information.

4.1. Network Error

In contrast to the typical training algorithms each epoch in

the VSS algorithm consists of Nw micro iterations. The

number of epochs needed for convergence is quite small, for

simple data it can be as low as 2 or 3. Fig. 7 shows the

accuracy A, MSE error E and the total weight norm growth

W (without using any methods of weight growth reduction)

during the training of an MLP network with 4-4-3 structure

on the Iris data.

Fig. 7. MSE error (E), classification accuracy on the training set (A) and

normalized weight ||W(i)||/||W(5)|| vector length (W) during the first 5

training cycles for the Iris (4-4-3) network

The error reaches minimum value already after two

epochs, while the accuracy is already at the maximum. In the

subsequent iterations most contribution to reduction of error

comes from growing quickly weights, in effect making the

sigmoidal functions steeper, although the direction of the

weight vector is changing very little. The error minima are

frequently in infinity (infinite growth of output layer

weights). When the norm ||W||=1 is imposed on the network

parameters, or a regularization term is added to the error

function, the minima are moved from infinity to a point at the

finite distance from the starting point.

The discussion and illustrations of error surface of network

trained with more complex data sets with different error

functions can be found in [24] and [37]. However, the

general conclusions drawn from the network training in the

Iris dataset can be extended to those cases.

4.2. Weight Values

Fig. 8 and 9 present changes of the hidden layer weights

trained by the VSS and the LM algorithms. Although training

 Neurocomputing 2478

the network with VSS beyond the 4-th epoch does

improve classification the training is continued here to show

how the weights change in this process. In VSS these

weights change very rapidly in the initial phase of the

training and quickly reach their optimal values. In LM (and

in other backpropagation-based algorithms) changes are

slower and continue for larger number of epochs. In the

second-order algorithms (such as LM) the hidden layer

weights grow faster than in the first order ones, but because

the step size in a given weight direction is approximately

proportional to the ratio of the first to the second derivative,

the hidden layer weights tend still to be underestimated. VSS

on the other hand does not estimate weight changes but

directly changes each particular weight to a value that

approximately corresponds to the error minimum in this

weight direction. The output layer weights change in a

similar manner in both algorithms; faster than the hidden

weights in LM, but slower than the hidden weights in VSS.

Another difference is that usually both layer weights change

in a more monotonic way in VSS than in LM.

VSS does not decrease the step when the gradient

decreases because this algorithm does not rely on gradient

information, but takes into account the learning history

contained in the trajectory. This is advantageous because also

the final part of the network training is relatively fast. On the

other hand it may lead to very large final weights. This

would stop the training process in gradient-based methods

because the volume of the parameter space where gradients

are non-zero shrinks to zero. For the VSS algorithm it is not

a big problem because the gradients are not used, but the

error surface becomes very flat, so the direction of the weight

changes is simply maintained and learning continues. Large

weights change in effect the sigmoid transfer functions into a

step-like function, and the final prediction into a binary

decision.

In some applications softer outputs may be preferred,

giving the user an idea how far is the test case from the

decision border (this is sometimes taken as an estimation of

the probability of classification). To prevent an excessive

weight growth either the training must be stopped early or a

regularization term [26] should be added to the error function

(for complex data this may be useful), or the parameters

max_w and max_d (defined in section 3.3) must be set to

limit maximum values of weights. VSS decreases the step

size as a result of tighter curvature of the error surface ravine

rather than gradient value. Obviously VSS will stop when

there is no difference between the error values in two

successive training cycles.

As the training approaches the final stage, the changes of

direction are usually slow if no regularization term is added

to the error function. If the regularization term (proportional

to the sum of the square of the weight values) is added, the

error surface in the areas where the weight vector reaches

optimal length resembles a paraboloid, preventing further

weight growth, but allowing for some small fluctuations of

the weight direction.

-6

-5

-4

-3

-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 Fig. 8. Hidden layer weight values for Iris (4-4-3) trained with VSS

(vertical axis: weight values, horizontal axis: epoch number).

-8

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 9. Hidden layer weight values for Iris (4-4-3) trained with LM (vertical

axis: weight values, horizontal axis: epoch number).

5. Experimental Results

In this section VSS performance is compared with the

performance of three well known neural learning algorithms,

Rprop, SCG and LM. These algorithms were chosen because

they are most effective and widely used for neural network

training.

Numerical experiments with the VSS algorithm have been

made on some well-known benchmark dataset from the UCI

learning repository, and the 3-bit parity data. The UCI

datasets and their detailed description can be found in [39].

The five benchmark datasets used for our tests have also

been used in many studies [40]. They range from very simple

data, such as Iris (4 continuous features, 3 classes, 150

vectors), to data of moderate size (WBC, Wisconsin Breast

Cancer, with 10 discrete features, 2 classes and 699 cases),

and to datasets that are challenging in different ways. The

Mushrooms dataset contains descriptions of 8124 samples of

edible and inedible mushrooms with 22 symbolic attributes

changed to 125 logical features. The Thyroid data contains

three classes, with diagnosis based on the 15 binary and 6

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks

2479

continuous features, for 3772 training cases (screening tests

for thyroid problems), and 3428 cases given as test data. The

training Shuttle dataset contained 43500 vectors and the test

set 14500 vectors, each with 9 attributes, describing events

from 7 categories. State-of-the-art results for these datasets

may be found in [23]. The n-bit parity problems are in

general difficult for MLP networks, therefore the 3-bit parity

problem was also included in the comparisons.

The binary features in Mushrooms and 3-bit parity were

represented by 0 and 1. Before training all data was

normalized to zero mean and unit standard deviation for each

feature:

xx
x

 (7)

For each training algorithm 20 experiments were

conducted with each dataset. The network was tested either

on a separate test data (Thyroid, Shuttle), or using the 10-fold

crossvalidation (Iris, WBC, Mushroom). A vector was

considered to be classified correctly if its corresponding

output neuron signal was larger than the other neuron signals,

and larger than 0.5. All training algorithms were run with

their default parameters, the same for each dataset. Table 2

shows a summary of results for which the training accuracy

was used as a stopping criterion (%trn), which on average

corresponded to the given test accuracy (%test).

VSS calculations have been performed using the program

developed by one of us (MK), written in Borland Delphi. The

Matlab Neural Network Toolbox (written by H. Demuth and

M. Hagen) was used for Rprop, SCG and LM calculations.

Several values determining algorithm efficiency are

considered here: the number of training cycles (N) required

to achieve the desired accuracy, the percentage of the

algorithm runs that converge to such solutions (CR), the

approximate memory requirements, and the total

computational cost. Comprehensive comparison of various

properties of different algorithm is a very complex and

difficult problem. The number of training epochs can be

easily compared, but there is no simple way of comparing

other performance parameters. The number of training

epochs or the number of times the error is calculated can be

quite misleading. For example, in the LM algorithm

calculation of the error is only a small fraction of the overall

cost of calculations, while in VSS, using the signal table,

calculations of the partial errors consumes almost all time.

The training times between Matlab implementation of

Rprop, SCG and LM algorithms and our implementation of

the VSS algorithm in Delphi are not easy to compare; for

example, operations on big arrays, done in LM and other

algorithms, are performed much faster in Matlab, while

operations on scalar variables are faster in Delphi. To make

the comparison more software and platform independent the

algorithm speed s has been expressed as the ratio of the

training time to the time of a single propagation of the

training set through the network, increasing the number of

vectors 100-fold. Only the 3-bit parity dataset was too small

for such estimation. Using VSS for small datasets this ratio

for the Iris data is s≈0.8 and for the WBC data s≈0.4,

showing that VSS was about 5-times faster than the three

algorithms used for comparison. For the Mushroom data

s≈0.7 and for the Thyroid s≈3.7, showing that the speed of

VSS, SCG and Rprop were of the same order, while LM was

about 5 times slower.

Implementations of all algorithms use 8-byte floating point

representation of numbers, therefore increase of memory

requirements by the programs after the initialization of the

network may be compared. For the Iris, Breast and the 3-bit

parity it was below the accuracy of measurement for all the

algorithms. For the Mushroom data it was 40MB for Rprop

and SCG, 240MB for LM and 0.4MB for VSS. For the

Thyroid it was 1MB for Rprop and SCG, 30MB for LM and

0.2MB for VSS.

Table. 2. Comparison of the VSS, RPROP, LM and SCG algorithms. N is

the number of training cycles (N) required to achieve the desired training
accuracy % trn, t is defined in Eq. (8), CR is the percentage of the algorithm

runs that converge to such solutions.

Algo-

rithm

data
set

Iris WBC
Mush
room

Thy-
roid

Shu-
ttle

3bit
parity

net-

work
4-4-3

10-4-

2

125-

4-3

21-4-

3
9-6-7 3-3-2

% trn 97.3 97.0 99.8 98.4 99.2 100

% tst 96.0 96.0 99.7 98.0 99.0 100

Rprop

N 104 89 15 87 15 131 131(65)

σ 18 66 3.0 42 4.8 65

t 110 50 41 65 18 74

CR 100 100 100 85 80 50 0.50

SCG

N 54 38 45 186 46 104

σ 20 28 19 91 16 87

t 56 21 48 91 40 51

CR 90 60 100 75 60 80

LM

N 20 15 6.0 43 15 27

σ 12 8.0 3.7 27 7.5 17

t 29 26 17 44 44 32

CR 80 85 90 60 60 75

VSS

N 3.5 1.6 2.0 10 6.0 3.1

σ 1.0 0.4 0.5 2.4 2.0 0.6

CR 100 100 100 95 95 95

Relative time and memory values are not reported in Tab.

2 because they obviously depend on a particular software

implementation of a given algorithm, but they give an idea of

what relative speeds and memory requirements may be

expected. It is clear that VSS may easily be used to handle

much bigger problems than Mushroom or Thyroid.

Estimation of the computational complexity of VSS

algorithm is shown in Table 1.

Only VSS and LM algorithms were able to find the

optimal solutions with the training accuracy frequently

higher than the required minimum, as shown in Tab. 2.

However, LM frequently did not converge to the solution and

the training had to be repeated with new random weights.

Nevertheless, solutions with such low error on the training

 Neurocomputing 2480

set usually have higher errors on the test set. Since the

task of neural networks is not to learn the training data points

but the underlying data model in order to ensure good

generalization, this aspect will not be analyzed further.

The CR parameter in Table 2 gives the percentage of the

algorithm runs that converged to the desired solution within

250 epochs for LM and VSS and within 1000 epochs for

Rprop and SCG. VSS had always the highest rate of

converged runs and the lowest variance of the results.

The standard t-test for the statistical significance of the

difference between the numbers of training cycles was used:

 (8)

For nVSS=nX=20 VSS training will require fewer training

cycles than training with algorithm X with probability 0.999

if t is greater than 3.55; this was true in all cases (Table. 2).

Although in the distribution of the number of training cycles

the skewness is usually greater than one, the t values were

significantly greater than 3.5, justifying the use of the t-test.

The evolution of MSE error and classification accuracy

during the VSS training is shown in Fig.7.

6. Discussion and conclusions

Most of the MLP training algorithms used in practical

applications are based on analytical gradient techniques and

the backpropagation of error computational scheme.

Stochastic search algorithms, based on simulated annealing

or evolutionary approaches are more costly and do not seem

to be competitive comparing to the multistart gradient-based

methods [18], although there are indications that on more

complex data results may be different [9]-[11].

A new class of neural training algorithms based on

systematic rather than stochastic search has been introduced

here. Systematic search techniques have always been popular

in artificial intelligence [41], but are neglected in the neural

network research. Not much is known about the relative

merits of these methods in comparison to widely used

stochastic, evolutionary, swarm, ant and other algorithms.

Very few attempts to use systematic search techniques have

been made so far. Numerical evaluation of gradients in

neural network training has been used in [24],[25],[42], and

in the extraction of logical rules from data [22],[23] beam

search techniques and updating the pairs of weights has been

used. In this paper one of the simplest variants of systematic

search algorithms has been explored, based on the single

weight update.

Analysis of the learning trajectories using the first two

principal components in the weight space to visualize MLP

error surfaces did not show local minima in “craters” (see

more examples in [24],[37]), except the one created by

regularization term. The main problem of neural training

seems thus not to be the local minima, but rather finding

narrow ravines on the landscape of the error function that

lead to flat valleys where optimal solutions are found (this is

the reason why many starting points followed by short

training may be more effective than long training), and

getting stuck on the highly situated plateaus. Algorithms

based on analytical gradients sometimes cannot precisely

determine optimal direction for the next step and may behave

as if they were in a local minimum. For that reason it is

worthwhile to develop an MLP training algorithm that does

not use the gradient information to determine direction and is

not so expensive as stochastic or evolutionary algorithms.

VSS may get stuck only in those cases when an unfortunate

random initialization will lead it away from a good solution,

to a point attractor on a highly situated ravine.

Analysis of learning trajectories helped formulate the

variable step size training algorithm based on a sequence of

single-weight updates, as it is done in the first iteration of

Powell’s quadratically convergent minimization algorithm

[33]. Numerous improvements of the efficiency of the VSS

algorithm have been proposed, the most important being the

signal table that allows for efficient updates of the neuron

activations. Although the VSS algorithm uses some heuristic

functions and constants (as most analytical gradient

algorithms also do [26],[31]) their values are kept fixed and

need not be adjusted by the user.

The VSS algorithm has many advantages. First, the

method is quite simple to program, even with all heuristics

described in this paper. It does not require calculation of

matrices, derivatives, derivation of complex formulas and

careful organization of information flow in the backward

step. This implies greater modularity of the software, for

example the ability to change error functions without re-

writing the program, or using cross-entropy error function or

arbitrary powers of error. There are also no restrictions on

the type of neural functions that can be used – the

discontinuous staircase functions may easily be replaced by

discrete approximation to transfer functions of any shape

[43]. This is very important because some of the functions

suitable for neural training lead to much faster convergence

on difficult problems [44], but their implementation in the

backpropagation networks require rather tedious changes in

many parts of the program. Implementation of heterogeneous

functions in a single neural network using analytical

approach is particularly difficult [45],[46]. Implementing

such functions with the VSS algorithm requires very little

changes to calculate activations and approximate neural

output functions, thus allowing for rapid development of

programs for any type of feedforward network (including

arbitrary radial basis function networks [26]), making this

approach ideal for experimentation.

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks

2481

It is rather surprising that in empirical tests VSS algorithm

performed so well, in most cases even better than well

established Rprop, SCG and LM algorithms, converging

frequently to good solutions in very few epochs.

Most algorithms manipulate only the batch size (the

number of vectors presented to the network before the

weights are updated) and change all the weights at once.

Updating the error function many times in each epoch seems

to be a unique feature of the VSS algorithm. The micro

iterations that change only a single weight at a time allow for

more precise exploration of the error surface. The same is

true for iterative solutions to eigenproblems when updates

are obtained after multiplication of a single row of

diagonalized matrix by approximated eigenvector instead of

the whole matrix-vector product [33].

 VSS is able to find very good solutions and has very low

memory requirements, making it suitable for large scale

applications. This algorithm can be used as a reference for

more sophisticated and computationally costly methods using

stochastic or evolutionary search techniques. There is also

plenty of room for improvement of different aspects of this

algorithm, for example adding additional directions in the

search process. Other algorithms that belong to this family,

based on more sophisticated search techniques, should also

be developed.

References

[1] D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning Internal

Representations by Error Propagation”. In Parallel Data Processing,
Vol.1, Chapter 8, the M.I.T. Press, Cambridge, 1986, pp. 318-362.

[2] M. Riedmiller and H. Braun, “RPROP – a fast adaptive learning

algorithm”, Technical Report, University Karlsruhe, 1992.
[3] S.E. Fahlman, “Faster Learning Variations of Backpropagation: an

empirical study”, Connectionist Models Summer School, Morgan

Kaufmann, pp. 38-51, 1998.
[4] C. Igel. M. Husken, “Empirical Evaluation of the Improved Rprop

Learning Algorithm”, Neurocomputing, vol. 50, pp. 105-123, 2003.

[5] A.D. Anastasiadis, G.D. Magoulas, M.N. Vrahatis, “New Globally
Convergent Training Scheme Based on the Resilient Propagation

Algorithm”, vol. 64, pp. 253-270, 2005.

[6] D. Marquard, “An Algorithm for Least-squares Estimation of
Nonlinear Parameters”, SIAM J. Appl. Math., vol.11, pp. 431-441,

1963.

[7] N.N.R. Ranga Suri, D. Deodhare, P. Nagabhushan, “Parallel
Levenberg-Marquardt-Based Neural Network Training on Linux

Clusters - A Case Study”, Proc. 3rd Indian Conf. on Computer Vision,

Graphics & Image Processing, Ahmadabad, India 2002.
[8] M.F. Möller, “A Scaled Conjugate Gradient Algorithm for Fast

Supervised Learning”, Neural Networks, vol. 6, pp. 525-533, 1993.

[9] M.D. Ritchie, B.C. White, J.S. Parker, L.W. Hahn, J.H. Moore,
“Optimization of neural network architecture using genetic

programming improves detection and modeling of gene-gene

interactions in studies of human diseases”. BMC Bioinformatics 4: 28,
2003.

[10] R.S. Sexton, R.E. Dorsey, N.A. Sikander, “Simultaneous optimization

of neural network function and architecture algorithm”. Decision
Support Systems, vol. 36(3), pp. 283-296, 2004.

[11] N. Garcia-Pedrajas, D. Ortiz-Boyer, C. Hervas-Martinez, “An

alternative approach for neural network evolution with a genetic

algorithm: crossover by combinatorial optimization”. Neural
Networks, vol. 19(4), pp. 514-528, 2006.

[12] J. Engel, “Teaching Feed-forward Neural Networks by Simulated

Annealing”, Complex Systems vol. 2, pp. 641-648, 1988.
[13] K.P. Unnikrishnan, and K.P. Venugopal, “Alopex: A Correlation-

Based Learning Algorithm for Feed-Forward and Recurrent Neural

Networks”, Neural Computations, 6, pp. 469-490, 1994.
[14] V. F. Koosh, “Analog Computation and Learning in VLSI”, PhD

Thesis, Caltech, Pasadena, CA, 2001.

[15] R. Battiti and G. Tecchiolli, “Training Neural Nets with the Reactive
Tabu Search”, IEEE Trans. on Neural Networks, vol.6, pp. 1185-1200,

1995.

[16] W. Duch, J. Korczak, Optimization and global minimization methods
suitable for neural networks, Technical Report 1/99, Nicolaus

Copernicus University,

http://citeseer.ist.psu.edu/duch98optimization.html
[17] L. Hamm and B. Wade Brorsen, “Global Optimization Methods”, The

2002 International Conference on Machine Learning and Applications

(ICMLA'02), Monte Carlo Resort, Las Vegas, Nevada, USA, June
2002.

[18] D. Saad (ed.), “On-Line Learning in Neural Networks”, Cambridge,

UK: Cambridge University Press 1998.
[19] J.R. Quinlan, R.M. Cameron-Jones, “Oversearching and layered search

in empirical learning”. Proc. of 14th Int. Joint Conference on Artificial
Intelligence (IJCAI-95), pp. 1019-1024, Montreal, Canada, 1995.

[20] E. Aarts , J.K. Lenstra, “Local Search in Combinatorial Optimization”,

John Wiley & Sons, Inc., New York, NY, 1997.
[21] J.C. Spall, “Introduction to Stochastic Search and Optimization”. J.

Wiley, Hoboken, NJ, 2003.

[22] W. Duch, K. Grąbczewski, “Searching for optimal MLP”. 4th

Conference on Neural Networks and Their Applications, Zakopane,

Poland 1999, pp. 65-70.

[23] W. Duch, R. Setiono, J.M. Zurada, “Computational intelligence
methods for understanding of data.” Proc. of the IEEE vol. 92(5), pp.

771- 805, 2004.

[24] M. Kordos, “Search-based Algorithms for Multilayer Perceptrons”,
PhD Thesis, The Silesian University of Technology, Gliwice, Poland

2005, available at http://www.phys.uni.torun.pl/~kordos

[25] W. Duch, M. Kordos, “Multilayer Perceptron Trained with Numerical
Gradient”. Proc. of Int. Conf. on Artificial Neural Networks (ICANN),

Istanbul, June 2003, pp. 106-109.

[26] S. Haykin, “Neural networks: a comprehensive foundations”. New
York: MacMillian Publishing 1994.

[27] K. W. Morton, D. F. Mayers, “Numerical Solution of Partial

Differential Equations. An Introduction”. Cambridge University Press,
2005.

[28] L.G.C. Hamey, “XOR has no local minima: A case study in neural

network error surface analysis”. Neural Networks, vol. 11(4), pp. 669-

681, 1998.

[29] E.D. Sontag, H.J. Sussman, “Backpropagation Can Give Rise to

Spurious Local Minima Even for Networks Without Hidden Layers”,
Complex Systems, vol. 3, pp. 91-106, 1989.

[30] F.M. Coetze, V.L. Stonick, “488 Solutions to the XOR Problem”,

Advances in Neural Information Processing Systems, vol. 9, pp. 410-
416, Cambridge, MA, MIT Press, 1997.

[31] R. Hecht-Nielsen, “Neurocomputing”, Adison-Wesley, Reading, MA,

1990.
[32] M. Lehr, “Scaled Stochastic Methods for Training Neural Networks”,

PhD Thesis, Stanford University, 1996.

[33] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
“Numerical Recipes in C”, Press Syndicate of The University of

Cambridge, 1992.

[34] W. Duch, “Support Vector Neural Training”. Lecture Notes in
Computer Science, vol. 3697, 67-72, 2005.

[35] M. Gallagher, “Multi-layer Perceptron Error Surfaces: Visualization,

Structure and Modeling”, PhD Thesis, University of Queensland,

2000.

[36] M. Gallagher, T. Downs, Visualization of Learning in Multi-layer

Perceptron Networks using PCA. IEEE Transactions on Systems, Man
and Cybernetics-Part B: Cybernetics, vol. 33(1):28-34, 2003.

 Neurocomputing 2482

[37] M. Kordos and W. Duch, “A Survey of Factors Influencing MLP

Error Surface”, Control and Cybernetics, vol. 33(4), pp. 611-631,

2004.
[38] J. Denker et. al., “Large automatic learning, rule extraction and

generalization”, Complex Systems, 1:887-922, 1987

[39] C.J. Mertz, P.M. Murphy, UCI repository of machine learning
databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

[40] D. Michie, D.J. Spiegelhalter, C. C. Taylor, “Machine Learning, neural

and statistical classification”, Elis Horwood, London, 1994
[41] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach.

Prentice Hall, 2nd ed, 2002.

[42] W. Duch, M. Kordos, “Search-based Training for Logical Rule
Extraction by Multilayer Perceptron”. Proc. of Int. Conf. on Artificial

Neural Networks (ICANN), Istanbul, June 2003, pp. 86-89.

[43] W. Duch and N. Jankowski, “Survey of neural transfer functions”,
Neural Computing Surveys vol. 2, pp. 163-213, 1999.

[44] W. Duch, “Uncertainty of data, fuzzy membership functions, and

multi-layer perceptrons”. IEEE Transactions on Neural Networks vol.
16(1), pp. 10-23, 2005.

[45] W. Duch, K. Grąbczewski, “Heterogeneous adaptive systems”. IEEE

World Congress on Computational Intelligence, Honolulu, HI, pp.
524-529, 2002.

[46] N. Jankowski, W. Duch, “Optimal transfer function neural networks”.

9th European Symposium on Artificial Neural Networks (ESANN),
Brugge, Belgium. De-facto publications, pp. 101-106, 2001.

