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Abstract 

A new class of search-based training algorithms for feedforward networks is introduced. These algorithms do not calculate analytical 

gradients and they do not use stochastic or genetic search techniques. The forward step is performed to calculate error in response to 

localized weight changes using systematic search techniques. One of the simplest variants of this type of algorithms, the Variable Step 

Search (VSS) algorithm, is studied in details. The VSS search procedure changes one network parameter at a time and thus does not 

impose any restrictions on the network structure or the type of transfer functions. Rough approximation to the gradient direction and the 

determination of the optimal step along this direction to find the minimum of cost function are performed simultaneously. Modifying 

the value of a single weight changes the signals only in a small fragment of the network, allowing for efficient calculation of 

contributions to errors. Several heuristics are discussed to increase the efficiency of VSS algorithm. Tests on benchmark data show that 

VSS performs not worse and sometimes even significantly better than such renown algorithms as the Levenberg-Marquardt or the 

scaled conjugate gradient. 

Keywords:  neural networks, Multi-Layer Perceptrons, neural training algorithms, search techniques, optimization 

1. Introduction 

Multilayer perceptrons (MLP) are usually trained using 

either analytical gradient-based algorithms with error 

backpropagation or (rarely) global optimization methods. 

Some of the most popular methods from the first group 

include standard backpropagation (BP) [1], various versions 

of RPROP [2]-[4], Quickprop [5], Levenberg-Marquardt 

(LM) [6][7] and the scaled conjugate gradient (SCG) [8] 

algorithms. The second group involves genetic algorithms 

[9]-[11], simulated annealing [12] and its variants such as 

Alopex [13], particle swarm optimization [14], tabu search 

[15] and several other algorithms [16],[17]. 

The training time of local gradient algorithms is usually 

significantly shorter than that of global methods. 

Sophisticated gradient techniques based on classical 

numerical analysis methods have been developed [18] and 

implemented in a large number of software packages. In 

theory global optimization methods should be able to find a 

better solution for complex problems, but in practice despite 

a lot of efforts (especially using the evolutionary computing 

algorithms) empirical results showing significant advantages 

of global optimization methods were difficult to obtain. 

Perhaps the benchmark problems analyzed were too simple. 

Applications to more difficult problems in bioinformatics 

show some advantages of genetically optimized neural 

networks [9]-[11]. In large parameter spaces the phenomenon 

of over-searching [19] may increase the chance that global 

optimization methods will find optimal solutions that for the 

test data will give worse results than solutions accessible by 

gradient methods. Thus extensive search may paradoxically 

make the problem of model selection quite difficult. 

In this paper a new class of neural training algorithms 

based on local search techniques [20] is explored. The 

analysis and the algorithms described here can be used for 

feedforward networks of arbitrary structure, with arbitrary 

transfer functions (this is in fact one of the greatest 

advantages of this approach because changing transfer 

functions does not require development of new formulas or 

significant changes of the program). However, to be concise 

we shall focus only on the standard 3-layer MLP networks 

trained for data classification with logistic sigmoid transfer 

function y(u) with the unit slope (=1):   
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A “staircase” approximation to logistic functions will also 

be mentioned. Search-based optimization methods include 

stochastic methods [21], evolutionary algorithms and local 

systematic search techniques. So far algorithms based on 

systematic search have been largely ignored, with only a few 

papers mentioning their use in logical rule extraction from 

neural networks [22][23]. Analytical gradients are calculated 

assuming infinitesimal changes, but in computer 

implementations of the training algorithms changes are finite 
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and fast learning requires large steps, therefore numerical 

effects may degrade performance of analytical gradient 

algorithms. Localized perturbations, restricted to one or two 

weights are sufficient to provide numerical approximation to 

gradient direction. Inspection of the real learning processes 

(using also visualization techniques) led us to several 

interesting conclusions [21][25], briefly summarized in the 

following sections.  

Remarks on gradients, search directions and search 

procedures are presented in section two. Lessons learned 

from experiments with search-based neural training 

algorithms were used to implement a new training method, 

called the Variable Step Search (VSS) algorithm. It uses a 

numerical rather than analytical approach in order to find 

optimal directions and step sizes in an iterative process. 

Several heuristics designed to improve performance of this 

algorithm are described in section three. Visualization of the 

VSS learning processes is presented in section four. 

Experimental results on several datasets, presented in section 

five in terms of convergence properties, accuracy and speed 

of calculations, are very promising. In many aspects VSS 

tends to perform very well, comparing favorably to the best 

neural training algorithms, such as the scaled conjugate 

gradient (SCG), the Levenberg-Marquardt and the Rprop 

algorithms. It is thus clear that VSS and other algorithms 

based on systematic search are worth investigating. The final 

section contains conclusions and remarks on the future work. 

2. Gradients and search directions 

In this section the background and the motivation for 

introduction of the VSS algorithm is presented. Analysis and 

comparison of analytical and numerical gradients is made 

and several remarks on the line search techniques for MLP 

training are made. Properties of the gradient directions 

calculated by backpropagation-based algorithms are 

discussed, and heuristics for finding optimal direction for the 

next search step are introduced.  

2.1. Numerical and Analytical Gradient Directions  

The analytical gradient-based algorithms use an error 

backpropagation mechanism to assess the gradient 

component in each hidden weight direction. Assuming a 

single output Y, feedforward mapping M(X;W) of the input 

vector X to Y, parameterized by the weight vector W and a 

standard quadratic error function [26] the formula for the 

gradient of the output weights wk is:  

 

    

 
( ) ( ; )

( ; )
k k

E M
M Y

w w

 
 

 

W X W
X W

        (2) 

 
The derivative of the mapping M(X;W) is expressed using 

derivatives of the transfer functions and the errors made by 

the network. These errors are propagated to the input layer to 

calculate gradients for the remaining weights. 

In the numerical gradient network training [24][25] a 

single weight wk is subject to a small perturbation dw 

(positive or negative) and changes of the network error in 

response to this perturbation are used as a gradient 

component in wk direction: 
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Thus the numerical gradient method roughly coincides with 

finite difference method of gradient approximation [27]. 

Accuracy of such calculation depends on the curvature of the 

error surface. The numerical gradient direction depends on 

dw, but this dependence is usually not too strong for dw in 

the range 0.0020.2 with unit sigmoid slope (β=1).  

    The main difference between gradients computed using 

analytical and numerical formulas is seen for small gradient 

values (frequently associated with the hidden weight 

components at the beginning of the training). Small gradients 

tend to be smaller in the analytical gradient calculations, 

while the large values tend to be larger (see Fig. 1). This 

tendency is stronger for larger networks with more complex 

data. Numerical gradient calculates the descent directions 

taking into account the error values in two points thus 

examining a broader range of the error surface than 

analytical gradient, so it can “predict” more precisely the 

error value in a spot located at some distance from the 

current point. 

     In the dependence shown in Fig. 1, the analytical gradient 

was calculated using Eq. 2, and the numerical gradient using 

Eq. 3. The relation between analytical and numerical gradient 

components is more important than the absolute value of the 

components because the absolute value is always multiplied 

by a certain step size during network training. Therefore the 

product of the step size and the component value is the most 

important quantity. The gradient components shown in Fig. 1 

are rescaled so that the lengths of the analytical and 

numerical gradient vector are the same. 

    Interesting empirical observations on numerical and 

analytical gradients have been made during training on 

several datasets. A finite step along numerical gradient 

direction leads in most cases to faster decrease of the error 

than the same step along analytical gradient direction. The 

difference is even stronger if minimization along the 

direction determined by backpropagation and numerical 

gradient is done. 
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Fig.  1. A comparison of analytically (BP) and numerically (NG, with 

dw=0.02) determined gradient components in all the weight directions for 

the thyroid dataset at the first training epoch using logistics sigmoid transfer 

functions with unit slope (=1). (21 inputs, 4 hidden, 3 outputs, 21-4-3 

network). 

 

 

    Although the numerical gradient is still not the optimal 

direction of the learning trajectory, it tends to be much closer 

to it than the analytical gradient (see the next subsection for 

detailed discussion). 

Backpropagation frequently gets stuck in apparent local 

minima or plateaus without reaching low values of the error 

[29]. The importance of local minima has been controversial 

for a long time [28]. Contrary to the common belief, local 

minima may not be a real problem in neural training; ill-

conditioning and saddle points have much more direct effect 

that has important influence on the performance of training 

algorithms [30]. Backpropagation training is frequently stuck 

only in the apparent local minima, and in many cases 

switching to another training algorithm (for example a 

numerical gradient) leads to the further decrease of the error 

and to the final convergence. Analytical gradient algorithms 

get stuck because gradients on flat surfaces, flat saddle points 

calculated in analytical way may become very small 

[31][32], while a finite step numerical gradient is larger and 

may lead to the lower areas on the error surface. Sometimes 

the trajectory may be trapped in a highly situated ravine on 

the error surface and then also the numerical gradient method 

is unable to converge. Visualization of the error surface (see 

sec. IV) shows frequently such situations, but the local 

minima in form of “craters” are never observed. In summary, 

there are good reasons to use numerical, instead of analytical, 

gradients. 

2.2. Gradient Direction and the Optimal Next Step Direction 

Gradient-based training methods make initially rapid 

progress, slowing significantly near the end of the training. 

Fig. 5 shows an MLP error surface projected on the first two 

PCA directions in the weight space (two directions capture 

typically over 95% of all variance). The error surface 

becomes almost flat in the areas that are located further from 

the starting point (initialization with small weights is 

assumed), and therefore reached by the learning trajectory at 

the final stage of the training. The analysis of such surfaces 

and one-dimensional crossections along single weight 

directions at the beginning and near the end of the training 

shows (Fig. 2) some interesting properties of MLP error 

surfaces. The hidden weights have in general rather low 

gradients at the beginning and at the end of the training, 

although their values change a lot; the output weights grow 

faster and have large gradients around minima, with large flat 

highly situated plateaus far from optimal values. This 

suggests deep ravines in the error function landscape.  

     

 

 
Fig.  2. Typical error surface crossections in the direction of: (1) hidden 

weight at the beginning of the training; (2) output weight at the beginning of 

the training, (3) output weight at the end of the training, (4) hidden weight at 

the end of the training. 

In any case gradient direction is not the optimal step 

direction. The RPROP algorithm that takes into account only 

the sign of a derivative instead of the gradient performs 

usually not worse than BP, and frequently even better 

[2],[26]. Moreover, there exists a certain similarity between 

Rprop and VSS: both use individual update steps for each 

weight. 
 

2.3. Gradients and Optimal Directions 

It is instructive to assess the statistical relation between 

the size of the gradient component dE(w) in the direction of 

weight w and the distance mw from the point W to the 

minimum of the error function in the direction of weight w 

(see Fig. 3). The error surface sections in a particular weight 

direction may differ significantly, although the curves shown 

in Fig. 2 are rather typical for most weights. We use 

numerical gradient in this section. The disproportion between 
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the analytical gradient component and the optimal step size is 

even bigger than for numerical gradient, because in this case 

it is the product of relations shown in Fig. 1 and in Fig. 3. 

 

 

 
Fig. 3. Dependence between the numerical gradient component dE(w) and 

the distance mw from the actual point to the minimum error in a given 
weight direction in the first training epoch (Iris 4-4-3 network). 

 

Initially the minima for the output weights are located 

near the current point W, but for the hidden weights they are 

on average much further (Fig. 3). The error surface landscape 

changes as the training progresses. However, the changes are 

visible mostly in the hidden weight directions. Thus, at the 

end of the training the relations shown in Fig. 3 will look 

very similar for both the hidden and output weights (as in 

Fig. 2, lower curves).  

 

Heuristic approximation of the relation between dE(w) 

and the m(w) distance in the successive training epochs may 

be used to speed up search of the minimum. An example of 

such approximation for logistics sigmoid transfer function is 

given by the equation below.  

  (1) 

     1( ) sign ( ) 1 exp cm w dE w a bt dE   

  1 maxmin ( ) ,min ,5 mdE dE w dE dE (4) 

 

The first factor takes care of the sign of the gradient. The 

second factor (where t denotes the epoch number) expresses 

the fact that during training the error surface sections around 

the actual learning trajectory in the direction of hidden 

weights are asymptotically getting more and more similar to 

the sections in the direction of output weights (Fig. 2). For 

that reason a=0 for output weights, while for hidden weights 

this factor is expressed by an exponential function, which 

asymptotically approaches 1. The third factor (dE1
C
) 

approximates the dependence of dE(w) on the distance m(w) 

in a given epoch for a given layer. Parameters dE1, a and b 

are determined fitting the function in Eq. 4 using the least 

mean square method on the data points (network weight 

values after each epoch) obtained while training the networks 

using the datasets described in section V with the numerical 

gradient method. dEmax is the greatest and dEm is the mean of 

the error changes while changing the weight values by dw to 

determine the descent direction. The power c(0,1) is a 

constant usually fixed at c =0.5, a=0 for the output layer, 

a[10,20] range for the hidden layer, and b=[0.10,0.20] 

range.  

Our aim at this point is to illustrate the situation rather 

than to find the best approximation, thus the purpose of Eq. 4 

is to demonstrate that using the statistics from several 

network trainings such approximation may be defined, 

although it may not be an optimal approximation. 

Nevertheless, in computational experiments described below 

the use of Eq. 4 to calculate distance to the expected 

minimum contributed to an average reduction of the number 

of the training epochs required for convergence by 30-60% 

with both numerical gradient and with analytical gradients in 

standard backpropagation procedure. 

The VSS algorithm, introduced in the next section, solves 

the problem of finding the trajectory direction in a different 

way, although still based on conclusions of the reasoning 

presented here. 

2.4. In-Place and Progressive Search 

The numerical gradient training [25] was based on the “in-

place search”: all weight changes were examined relatively 

to the current set of weights (point on the error surface), and 

then a single step was made searching for a minimum along 

the gradient direction. Thus numerical gradient simply 

replaced the analytical gradient in the backpropagation 

procedure.  

The simplest search for the minimum of a function is 

based on progressive line search. Minimum is found 

separately for one parameter (using any line search method), 

and the process is repeated starting from the new point for 

the remaining parameters, as used in algorithms that search 

along the coordinate directions [33]. Parameters may be 

randomly reordered before each iteration. Although more 

sophisticated ways to choose directions may be introduced, 

for example using the conjugate gradient directions [33], it is 

worth trying the simplest approach first (i.e. moving along 

the directions of the coordinate axes). In fact moving along 

the individual parameter directions is also done in the first 

iteration of the Powell’s quadratically convergent method 

[33], an iteration that usually leads to the largest reduction of 

the error. The search method used in the VSS algorithm is 

based on repetitive application of this first iteration.  

VSS is a generalization of the simple search method that 

adds or subtracts from each parameter a fixed dw value, 

accepting only those changes that lead to the decrease of 
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errors. To avoid local minima stochastic algorithms, such 

as simulated annealing [12], Alopex [13], and several other 

global optimisation algorithms, accept (using specific 

probability distribution) changes that lead to an increase of 

the error. The VSS algorithm does not use this approach, 

relaying on the method of exploring the error surface that 

allows for effective MLP training, as long as the next point is 

within the same ravine of the error surface (Fig.5). Therefore 

in the “variable step search” (VSS) training algorithm the 

step size in each direction is determined by the line search.  

Progressive search method updates the weight vector W 

immediately after the minimum along wk direction is found, 

thus making as many steps (micro-iterations) in orthogonal 

directions during one iteration (training epoch) as the number 

of weights Nw. After each micro-iteration the weight vector 

W is changed, and thus also the error landscape and the value 

of the function E(W) used for the next step. After the whole 

epoch the error function will undergo Nw modifications, 

which is in contrast to the standard backpropagation and 

other analytical approaches, where changes to all W 

components are made under the assumption of using the 

same E(W).  

The basic VSS algorithm is very simple and is outlined in 

the following pseudo code: 

 

for i=1 to NumberOfEpochs do 

     for j=1 to NumberOfWeights do 

          find dwj that minimizes E(i,wj+dwj); 

          wj  wj+dwj; 

    end     

    if E < Emin 

        break; 

    end 

end 

       

Emin is the error value at which the training stops; selecting 

the stopping criterion is not specific to VSS and can be done 

in the same way as for other MLP training algorithms. The 

method of calculating the error value E is shown in Fig. 4. 

    Any line search minimization method can be used to find 

the optimal dw, and the mean-square error (MSE) or any 

other error measure [26][31] may be used as optimization 

criterion. However, to increase the computational efficiency 

of VSS algorithm special methods to compute dw and 

E(e,w+dw) are proposed below. 

3. Reduction of Computational Cost 

There are many general methods that reduce 

computational costs of neural training, such as weight 

pruning [26], use of support vectors for neural training [34], 

statistical sampling for large training sets, etc. Because these 

methods can be used with almost any neural training 

algorithm they will not be discussed here. Instead, three 

methods specific to the VSS algorithm are considered: signal 

table for organizing updates of error calculations, non-

differentiable transfer functions that may be computed faster 

than continuous sigmoidal functions and some heuristics to 

speed up the line search for a minimum in a given weight 

direction. 

 

3.1.  Signal Table  

Because only one weight is changed at a time the input 

signals do not need to be propagated through the entire 

network to calculate the error. Propagation through the 

fragment of the network in which the signals may change as 

a result of the weight update is sufficient. The remaining 

signals incoming to all neurons of hidden and output layers 

are remembered for each training vector in an array called 

the “signal table”. After a single weight is changed only the 

appropriate entries in the signal table are updated. The MSE 

error of each output neuron is also remembered and do not 

need to be recalculated again if a weight of another output 

neuron is changed.  

At the beginning of the training the signals are propagated 

through the entire network (this is done only one time), thus 

filling in the signal table entries. The use of the signal table 

significantly shortens training time enabling effective 

training of larger networks. Table 1 contains the formulas for 

the number of arithmetical operations with and without the 

signal table. The formulas are based on the analysis of the 

signal flow. For example in the first formula, No(Nh+1) is the 

total number of weights in the output layer, Nh(Ni+1) in the 

hidden layer and (No+Nh) is the total number of activation 

functions in the network. Thus, calculating the network error 

after every single weight change the activation function 

would have to be calculated that many times. 

The dimension of the signal table is NV(No+Nh), where NV 

is the number of vectors in the training set and Nh and No  are 

the numbers of hidden and output neurons, respectively. For 

example, for a network with 30 neurons and 10,000 training 

vectors, storing variables in 8 bytes (double type) the signal 

table needs only 2.3 MB of memory, that is two or more 

orders of magnitude less than the memory requirements for 

the LM algorithm, and also less than the requirements of 

SCG algorithm (see details in section five). 
 

Table 1. The number of operations with and without the signal table required 
to calculate numerical gradient direction (for one training vector). Ni, Nh, No 

– number of input, hidden and output neurons.  

 
operation type number of oper-

ations without 

signal table 

number of 

operations with 

signal table 

calculating 

sigmoid value 

(neuron outputs) 

[No(Nh+1) + 

Nh(Ni +1)] 

(No+Nh) 

No(Nh +1) +  

Nh(Ni +1)(1+No) 

adding incoming 

signals multi-

plied by weight 

values (neuron 

activations) 

[Nh(Ni +1) + 

No(Nh +1)]2 

2[No(Nh +1)+ 

Nh(Ni+1)(1+ No)] 
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3.2.  Staircase Transfer Functions 

Calculation of the value of sigmoidal transfer functions is 

quite time consuming; in our experiments it took over 8 

times longer than a single multiplication (in Borland Delphi 

implementation on the Athlon XP processor). Due to the 

finite precision of numerical calculations in computer imple-

mentation the sigmoidal transfer functions are in fact non-

differentiable staircase functions with a very large number of 

small steps. Because the VSS algorithm does not rely on 

analytical gradient the transfer functions do not have to be 

differentiable and an array with approximated values 

implementing a staircase transfer function with lower 

precision can be used, reducing the training times by more 

than half without compromising accuracy. At least 20 

equally spaced values of sigmoidal function have been used, 

approximating the sigmoid with accuracy of 2-3 significant 

digits. 

The signal table can reduce the number of operations 

required to calculate the weighted activation u for a large 

network by several orders of magnitude, updating the 

activations u in the epoch i for a single weight change wk as: 

             
)( 1,,1   ikikii wwxuu

                (5)
  

The number of operations required to calculate single 

neuron output y(u) is reduced on average by the signal table 

by less than one order of magnitude. With signal table the 

staircase transfer functions additionally shortens the training 

time up to several times. On the other hand without the signal 

table the gain due to the staircase approximation of sigmoidal 

functions is quite small, because the calculation time is 

dominated by multiplications that enter activations u.  

3.3.  Line Search Heuristics 

The search algorithm should take advantage of the MLP 

error surface properties. The steepness of the error surface in 

different directions varies by orders of magnitude, and the 

ravines in which the MLP learning trajectories lay are 

usually curved, slowly changing their directions 

[35],[36],[37],[38]. Therefore one can expect that an optimal 

change of weight value dw for the same weight in two 

successive training cycles will not differ much, while dw for 

different weights in the same training cycle may have values 

that differ on orders of magnitude.  

In each training cycle i the first guess of dw(w,i) for a 

given weight w might be the value dw(w,i) of the weight 

change in the previous training cycle. However, detailed 

empirical analysis of our implementation of the line search 

leads to the conclusion that for most cases convergence is 

faster when smaller dw(w,i)  0.35dw(w,i) are used, in 

spite of the fact that statistically the ratio dw(w,i)/dw(w,i) 

is close to 1.  

Fig. 4 shows a diagram for determining the change dw of 

a single weight w in one training cycle i. OE (Old Error) is 

the MSE error (or another error measure) before the weight 

change is applied, and NE (New Error) is the error after the 

weight change is applied. Parameters max_n (maximum 

number of iterations), max_w (maximum allowed absolute 

value of the weight) and max_d (maximum allowed change 

of a weight in one training cycle) are introduced to prevent 

excessive growth of the weights. These parameters are 

optional and can have very large values or even be set to 

infinity. Experimentally determined optimal values of other 

parameters used in Fig. 4 are in the following ranges: 

c1[0.3,0.4], c2[2,3], c3[0.1,0.3]. However, the 

algorithm is not very sensitive to the values of these 

parameters, therefore they were set to their middle values and 

never changed in the experiments reported below. It should 

also be stressed that the results of VSS algorithm do not 

depend on these parameters; they may only influence the 

speed of convergence. 

Before the training starts the weights are initialized with 

random values from the  interval. In the first training 

cycle d=d0[0.2,0.3]. Since dw(w,0)=0, for each weight w in 

the first training cycle the first guess dw(w,1)=d0 is taken. 

Because close to the starting (initialization) point the ravine 

leading to a minimum on the error surface is rather narrow, 

d0 must be sufficiently small to avoid overshooting and to 

keep the trajectory within the ravine. 

Another heuristics has been derived from the observation 

that calculation of the minima along each weight direction to 

a high precision (e.g. by repeated parabolic interpolations 

where the curvature is not convex) increases the number of 

the training cycles, quite opposite to the expectations. 

Therefore only rough estimation of the step size dw in each 

direction is made. On average determining a single weight 

value in one training cycle the error in the line search 

algorithm needs to be calculated only about 3 times. (If the 

error does not change at the first attempt the weight value is 

kept unchanged for this iteration.) It is possible to increase c1 

and c2 parameters so that the error will be calculated on 

average only twice, but this increases the number of training 

epochs and therefore does not reduce the total computational 

cost of the training. 

In Fig. 4 block 3 deals with weights that did not change in 

the previous training cycle. This usually means that more 

precise weight tuning is needed, therefore a smaller value 

d=d1·sign(w) is added to that weight, preserving the 

direction but changing its value in the next training cycle.  

For that reason d1 is multiplied by sign(w) to minimize 

the number of operations. The error value NE is calculated in 

blocks 4, 6 and 9. The functionality of block 10 is analogical 

to the momentum term used in backpropagation. If 

c3·(VEOE)>NEOE then the point is accepted, although 

the error in the previous point could have been a bit lower, 

since it is likely to bring gain in the next training cycle. VE is 
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the error recorded one step before OE, that is 

NE=error(n), OE=error(n1), and VE=error(n2).  
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Fig.  4. Sketch of the Variable Step Search algorithm determining a single 

weight value in one training cycle. 

 

Many experiments aimed at estimation of the optimal 

weight change sequence were performed, but various 

sequences did not have significant influence on the training 

efficiency. Therefore the weights are changed either in a 

random order or one after another in a systematic way, first 

all weights from the hidden layer, and than all weights from 

the output layer, or vice versa. If the change of a given 

weight does not significantly reduce the error for two 

iterations the weight is frozen, and if the weight is quite 

small it may be pruned. 

The diagram shown in Fig. 4 presents the VSS algorithm 

incorporating the best heuristics found so far. It should be 

stressed that implementation of these heuristics is not 

necessary for the algorithm to work, but they are useful to 

increase its efficiency. Backpropagation-based algorithms 

also use a number of heuristics for the same purpose 

[26],[31]. Although the diagram in Fig. 4 seems to be 

complicated because several conditions are checked to 

incorporate various heuristics in fact implementation is quite 

simple as there is no need to program complex formulas with 

matrices and derivatives, as is the case for backpropagation-

based methods. The VSS algorithm applied to MLP training 

proved to be quite stable, on most datasets leading to 

convergence in a very few training cycles. 

4. VSS Learning Progress 

Principal Component Analysis (PCA) can be used to 

reduce the weight space dimensionality for purpose of 

learning trajectory and the error surface visualization 

[24],[35]-[37]. Weight vectors W(t) at the starting point t=0, 

and after each training epoch t=1..tmax, are collected in the 

weight matrix W=[W(0), W(1),.. W(tmax)] with n rows and 

tmax+1 columns. To determine principal components Singular 

Value Decomposition (SVD) is performed on the weight 

covariance matrix [33]. Each entry in the weight covariance 

matrix is calculated as:  

  
max

0max

1
( ) ( )

t

ij i i j j

t

c W t W W t W
t 

  
    

(6)

 

  

where 
iW  is the i-th weight mean over all tmax+1 epochs. A 

subset of the training epochs may be used to focus on some 

part of the learning trajectory. 

For each point (c1, c2) in the PCA weight space W(c1, c2) = 

c1V1 + c2V2 + W0 is defined, where W0 may be selected as 

one of the points on the learning trajectory (for example the 

starting point) and V1 and V2 are the unit vectors in the first 

and second principal component directions. The error surface 

plot (Fig. 5) shows the relative error Er(W) = E(W)/NVNC on 

the vertical axis, and distances (c1, c2) in V1 and V2 directions 

on the horizontal axes. NV is the number of vectors and NC is 

the number of classes in the training set. For all error 

functions based on the Minkovsky’s metric ||
.
|| when the 

output layer transfer function is bounded by 0 and 1 the error 

values are bounded from above by NVNC. Thus, the relative 

error is bounded by 1. The mean square error (MSE) is the 

most frequently used error measure, but replacing it with 

some other error measure in the VSS algorithm is quite 

trivial.  

Typically the first principal component captures about 

90% of the variance and the first two components contain 

together more than 95% of the total variance, therefore the 

plots reflect learning trajectory properties quite well. 

Although restoration of the error surface from only two PCA 

components is not ideal, to a significant degree projection of 

the learning trajectories tend to adhere to this surface. The 

beginning of a trajectory lies often over the error surface 

projection and its end under (the error surface projections are 

often flatter than original error surface on which the 

trajectory lies). The trajectories in n-dimensional weight 

space are bent, and their mean direction corresponds to the 
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direction of the error surface ravine in the PCA projection. 

Nevertheless visualization of the error surfaces and 

trajectories helps to understand the learning dynamics of 

neural algorithms [37]. 

 

 
 

Fig.  5. Error surface and the learning trajectory of Iris (4-4-3) trained with 

VSS algorithm.  
 

 

 
 

Fig. 6a. Projection of the Iris (4-4-3) learning trajectory trained with VSS in 

the first and second PCA direction. The cross shows the zero point in the 

weight space, and short bars separate the training epochs. 

 

 

 
Fig. 6b. Projection of the Iris (4-4-3) learning trajectory trained with VSS in 

the third and fourth PCA direction. The cross shows the zero point in the 

weight space, and little bars separate the training epochs. 

 

Fig. 6a and 6b present the directions of the weight changes 

in the first two PCA components during the VSS training. In 

each iteration correct direction of the error function’s ravine 

which leads the trajectory towards minimum is quickly found 

and maintained. This figure is based on weights that have 

been updated in a systematic way, starting from the hidden 

weights, and ending with the output weights. The directions 

change sharply in the middle of iteration, when one of the 

hidden weight values is changed by a large amount, and then 

near the end of the epoch, when output weights are changed. 

Trajectories displayed in directions corresponding to higher 

PCA components seem to be quite chaotic (Fig. 6b) and do 

not carry much information.  
 

4.1.  Network Error 

In contrast to the typical training algorithms each epoch in 

the VSS algorithm consists of Nw micro iterations. The 

number of epochs needed for convergence is quite small, for 

simple data it can be as low as 2 or 3. Fig. 7 shows the 

accuracy A, MSE error E and the total weight norm growth 

W (without using any methods of weight growth reduction) 

during the training of an MLP network with 4-4-3 structure 

on the Iris data.  

 

 
 

Fig. 7. MSE error (E), classification accuracy on the training set (A) and 

normalized weight ||W(i)||/||W(5)|| vector length (W) during the first 5 

training cycles for the Iris (4-4-3) network 

 

The error reaches minimum value already after two 

epochs, while the accuracy is already at the maximum. In the 

subsequent iterations most contribution to reduction of error 

comes from growing quickly weights, in effect making the 

sigmoidal functions steeper, although the direction of the 

weight vector is changing very little. The error minima are 

frequently in infinity (infinite growth of output layer 

weights). When the norm ||W||=1 is imposed on the network 

parameters, or a regularization term is added to the error 

function, the minima are moved from infinity to a point at the 

finite distance from the starting point. 

The discussion and illustrations of error surface of network 

trained with more complex data sets with different error 

functions can be found in [24] and [37]. However, the 

general conclusions drawn from the network training in the 

Iris dataset can be extended to those cases. 

4.2. Weight Values 

Fig. 8 and 9 present changes of the hidden layer weights 

trained by the VSS and the LM algorithms. Although training 
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the network with VSS beyond the 4-th epoch does 

improve classification the training is continued here to show 

how the weights change in this process. In VSS these 

weights change very rapidly in the initial phase of the 

training and quickly reach their optimal values. In LM (and 

in other backpropagation-based algorithms) changes are 

slower and continue for larger number of epochs. In the 

second-order algorithms (such as LM) the hidden layer 

weights grow faster than in the first order ones, but because 

the step size in a given weight direction is approximately 

proportional to the ratio of the first to the second derivative, 

the hidden layer weights tend still to be underestimated. VSS 

on the other hand does not estimate weight changes but 

directly changes each particular weight to a value that 

approximately corresponds to the error minimum in this 

weight direction. The output layer weights change in a 

similar manner in both algorithms; faster than the hidden 

weights in LM, but slower than the hidden weights in VSS. 

Another difference is that usually both layer weights change 

in a more monotonic way in VSS than in LM. 

VSS does not decrease the step when the gradient 

decreases because this algorithm does not rely on gradient 

information, but takes into account the learning history 

contained in the trajectory. This is advantageous because also 

the final part of the network training is relatively fast. On the 

other hand it may lead to very large final weights. This 

would stop the training process in gradient-based methods 

because the volume of the parameter space where gradients 

are non-zero shrinks to zero. For the VSS algorithm it is not 

a big problem because the gradients are not used, but the 

error surface becomes very flat, so the direction of the weight 

changes is simply maintained and learning continues. Large 

weights change in effect the sigmoid transfer functions into a 

step-like function, and the final prediction into a binary 

decision. 

In some applications softer outputs may be preferred, 

giving the user an idea how far is the test case from the 

decision border (this is sometimes taken as an estimation of 

the probability of classification). To prevent an excessive 

weight growth either the training must be stopped early or a 

regularization term [26] should be added to the error function 

(for complex data this may be useful), or the parameters 

max_w and max_d (defined in section 3.3) must be set to 

limit maximum values of weights. VSS decreases the step 

size as a result of tighter curvature of the error surface ravine 

rather than gradient value. Obviously VSS will stop when 

there is no difference between the error values in two 

successive training cycles. 

As the training approaches the final stage, the changes of 

direction are usually slow if no regularization term is added 

to the error function. If the regularization term (proportional 

to the sum of the square of the weight values) is added, the 

error surface in the areas where the weight vector reaches 

optimal length resembles a paraboloid, preventing further 

weight growth, but allowing for some small fluctuations of 

the weight direction. 
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 Fig. 8. Hidden layer weight values for Iris (4-4-3) trained with VSS 

(vertical axis: weight values, horizontal axis: epoch number). 
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Fig. 9. Hidden layer weight values for Iris (4-4-3) trained with LM  (vertical 

axis: weight values, horizontal axis: epoch number). 
 

5. Experimental Results 

In this section VSS performance is compared with the 

performance of three well known neural learning algorithms, 

Rprop, SCG and LM. These algorithms were chosen because 

they are most effective and widely used for neural network 

training.  

Numerical experiments with the VSS algorithm have been 

made on some well-known benchmark dataset from the UCI 

learning repository, and the 3-bit parity data. The UCI 

datasets and their detailed description can be found in [39]. 

The five benchmark datasets used for our tests have also 

been used in many studies [40]. They range from very simple 

data, such as Iris (4 continuous features, 3 classes, 150 

vectors), to data of moderate size (WBC, Wisconsin Breast 

Cancer, with 10 discrete features, 2 classes and 699 cases), 

and to datasets that are challenging in different ways. The 

Mushrooms dataset contains descriptions of 8124 samples of 

edible and inedible mushrooms with 22 symbolic attributes 

changed to 125 logical features. The Thyroid data contains 

three classes, with diagnosis based on the 15 binary and 6 
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continuous features, for 3772 training cases (screening tests 

for thyroid problems), and 3428 cases given as test data. The 

training Shuttle dataset contained 43500 vectors and the test 

set 14500 vectors, each with 9 attributes, describing events 

from 7 categories. State-of-the-art results for these datasets 

may be found in [23]. The n-bit parity problems are in 

general difficult for MLP networks, therefore the 3-bit parity 

problem was also included in the comparisons.  

The binary features in Mushrooms and 3-bit parity were 

represented by 0 and 1. Before training all data was 

normalized to zero mean and unit standard deviation for each 

feature: 

                       


xx
x


  (7) 

For each training algorithm 20 experiments were 

conducted with each dataset. The network was tested either 

on a separate test data (Thyroid, Shuttle), or using the 10-fold 

crossvalidation (Iris, WBC, Mushroom). A vector was 

considered to be classified correctly if its corresponding 

output neuron signal was larger than the other neuron signals, 

and larger than 0.5. All training algorithms were run with 

their default parameters, the same for each dataset. Table 2 

shows a summary of results for which the training accuracy 

was used as a stopping criterion (%trn), which on average 

corresponded to the given test accuracy (%test). 

VSS calculations have been performed using the program 

developed by one of us (MK), written in Borland Delphi. The 

Matlab Neural Network Toolbox (written by H. Demuth and 

M. Hagen) was used for Rprop, SCG and LM calculations.  

Several values determining algorithm efficiency are 

considered here: the number of training cycles (N) required 

to achieve the desired accuracy, the percentage of the 

algorithm runs that converge to such solutions (CR), the 

approximate memory requirements, and the total 

computational cost. Comprehensive comparison of various 

properties of different algorithm is a very complex and 

difficult problem. The number of training epochs can be 

easily compared, but there is no simple way of comparing 

other performance parameters. The number of training 

epochs or the number of times the error is calculated can be 

quite misleading. For example, in the LM algorithm 

calculation of the error is only a small fraction of the overall 

cost of calculations, while in VSS, using the signal table, 

calculations of the partial errors consumes almost all time. 

The training times between Matlab implementation of 

Rprop, SCG and LM algorithms and our implementation of 

the VSS algorithm in Delphi are not easy to compare; for 

example, operations on big arrays, done in LM and other 

algorithms, are performed much faster in Matlab, while 

operations on scalar variables are faster in Delphi. To make 

the comparison more software and platform independent the 

algorithm speed s has been expressed as the ratio of the 

training time to the time of a single propagation of the 

training set through the network, increasing the number of 

vectors 100-fold. Only the 3-bit parity dataset was too small 

for such estimation. Using VSS for small datasets this ratio 

for the Iris data is s≈0.8 and for the WBC data s≈0.4, 

showing that VSS was about 5-times faster than the three 

algorithms used for comparison. For the Mushroom data 

s≈0.7 and for the Thyroid s≈3.7, showing that the speed of 

VSS, SCG and Rprop were of the same order, while LM was 

about 5 times slower.  

Implementations of all algorithms use 8-byte floating point 

representation of numbers, therefore increase of memory 

requirements by the programs after the initialization of the 

network may be compared. For the Iris, Breast and the 3-bit 

parity it was below the accuracy of measurement for all the 

algorithms. For the Mushroom data it was 40MB for Rprop 

and SCG, 240MB for LM and 0.4MB for VSS. For the 

Thyroid it was 1MB for Rprop and SCG, 30MB for LM and 

0.2MB for VSS.  
 

Table. 2. Comparison of the VSS, RPROP, LM and SCG algorithms. N is 

the number of training cycles (N) required to achieve the desired training 
accuracy % trn, t is defined in Eq. (8), CR is the percentage of the algorithm 

runs that converge to such solutions.  

Algo- 

rithm 

data 
set 

Iris WBC 
Mush
room 

Thy-
roid 

Shu-
ttle 

3bit 
parity 

net-

work 
4-4-3 

10-4-

2 

125-

4-3 

21-4-

3 
9-6-7 3-3-2 

% trn 97.3 97.0 99.8 98.4 99.2 100 

% tst 96.0 96.0 99.7 98.0 99.0 100 

Rprop 

N 104 89 15 87 15 131  131(65) 

σ 18 66 3.0 42 4.8 65   

t 110 50 41 65 18 74   

CR 100 100 100 85 80 50  0.50 

SCG 

N 54 38 45 186 46 104 

σ 20 28 19 91 16 87 

t 56 21 48 91 40 51 

CR 90 60 100 75 60 80 

LM 

N 20 15 6.0 43 15 27 

σ 12 8.0 3.7 27 7.5 17 

t 29 26 17 44 44 32 

CR 80 85 90 60 60 75 

VSS 

N 3.5 1.6 2.0 10 6.0 3.1 

σ 1.0 0.4 0.5 2.4 2.0 0.6 

CR 100 100 100 95 95 95 

 

Relative time and memory values are not reported in Tab. 

2 because they obviously depend on a particular software 

implementation of a given algorithm, but they give an idea of 

what relative speeds and memory requirements may be 

expected. It is clear that VSS may easily be used to handle 

much bigger problems than Mushroom or Thyroid. 

Estimation of the computational complexity of VSS 

algorithm is shown in Table 1. 

Only VSS and LM algorithms were able to find the 

optimal solutions with the training accuracy frequently 

higher than the required minimum, as shown in Tab. 2. 

However, LM frequently did not converge to the solution and 

the training had to be repeated with new random weights. 

Nevertheless, solutions with such low error on the training 
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set usually have higher errors on the test set. Since the 

task of neural networks is not to learn the training data points 

but the underlying data model in order to ensure good 

generalization, this aspect will not be analyzed further.  

The CR parameter in Table 2 gives the percentage of the 

algorithm runs that converged to the desired solution within 

250 epochs for LM and VSS and within 1000 epochs for 

Rprop and SCG. VSS had always the highest rate of 

converged runs and the lowest variance of the results. 

The standard t-test for the statistical significance of the 

difference between the numbers of training cycles was used:  

 

                                          (8)  
 

For nVSS=nX=20 VSS training will require fewer training 

cycles than training with algorithm X with probability 0.999 

if t is greater than 3.55; this was true in all cases (Table. 2). 

Although in the distribution of the number of training cycles 

the skewness is usually greater than one, the t values were 

significantly greater than 3.5, justifying the use of the t-test. 

The evolution of MSE error and classification accuracy 

during the VSS training is shown in Fig.7. 

6. Discussion and conclusions 

Most of the MLP training algorithms used in practical 

applications are based on analytical gradient techniques and 

the backpropagation of error computational scheme. 

Stochastic search algorithms, based on simulated annealing 

or evolutionary approaches are more costly and do not seem 

to be competitive comparing to the multistart gradient-based 

methods [18], although there are indications that on more 

complex data results may be different [9]-[11].  

A new class of neural training algorithms based on 

systematic rather than stochastic search has been introduced 

here. Systematic search techniques have always been popular 

in artificial intelligence [41], but are neglected in the neural 

network research. Not much is known about the relative 

merits of these methods in comparison to widely used 

stochastic, evolutionary, swarm, ant and other algorithms. 

Very few attempts to use systematic search techniques have 

been made so far. Numerical evaluation of gradients in 

neural network training has been used in [24],[25],[42], and 

in the extraction of logical rules from data [22],[23] beam 

search techniques and updating the pairs of weights has been 

used. In this paper one of the simplest variants of systematic 

search algorithms has been explored, based on the single 

weight update.  

Analysis of the learning trajectories using the first two 

principal components in the weight space to visualize MLP 

error surfaces did not show local minima in “craters” (see 

more examples in [24],[37]), except the one created by 

regularization term. The main problem of neural training 

seems thus not to be the local minima, but rather finding 

narrow ravines on the landscape of the error function that 

lead to flat valleys where optimal solutions are found (this is 

the reason why many starting points followed by short 

training may be more effective than long training), and 

getting stuck on the highly situated plateaus. Algorithms 

based on analytical gradients sometimes cannot precisely 

determine optimal direction for the next step and may behave 

as if they were in a local minimum. For that reason it is 

worthwhile to develop an MLP training algorithm that does 

not use the gradient information to determine direction and is 

not so expensive as stochastic or evolutionary algorithms. 

VSS may get stuck only in those cases when an unfortunate 

random initialization will lead it away from a good solution, 

to a point attractor on a highly situated ravine.  

Analysis of learning trajectories helped formulate the 

variable step size training algorithm based on a sequence of 

single-weight updates, as it is done in the first iteration of 

Powell’s quadratically convergent minimization algorithm 

[33]. Numerous improvements of the efficiency of the VSS 

algorithm have been proposed, the most important being the 

signal table that allows for efficient updates of the neuron 

activations. Although the VSS algorithm uses some heuristic 

functions and constants (as most analytical gradient 

algorithms also do [26],[31]) their values are kept fixed and 

need not be adjusted by the user.  

The VSS algorithm has many advantages. First, the 

method is quite simple to program, even with all heuristics 

described in this paper. It does not require calculation of 

matrices, derivatives, derivation of complex formulas and 

careful organization of information flow in the backward 

step. This implies greater modularity of the software, for 

example the ability to change error functions without re-

writing the program, or using cross-entropy error function or 

arbitrary powers of error. There are also no restrictions on 

the type of neural functions that can be used – the 

discontinuous staircase functions may easily be replaced by 

discrete approximation to transfer functions of any shape 

[43]. This is very important because some of the functions 

suitable for neural training lead to much faster convergence 

on difficult problems [44], but their implementation in the 

backpropagation networks require rather tedious changes in 

many parts of the program. Implementation of heterogeneous 

functions in a single neural network using analytical 

approach is particularly difficult [45],[46]. Implementing 

such functions with the VSS algorithm requires very little 

changes to calculate activations and approximate neural 

output functions, thus allowing for rapid development of 

programs for any type of feedforward network (including 

arbitrary radial basis function networks [26]), making this 

approach ideal for experimentation.  
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It is rather surprising that in empirical tests VSS algorithm 

performed so well, in most cases even better than well 

established Rprop, SCG and LM algorithms, converging 

frequently to good solutions in very few epochs.  

Most algorithms manipulate only the batch size (the 

number of vectors presented to the network before the 

weights are updated) and change all the weights at once. 

Updating the error function many times in each epoch seems 

to be a unique feature of the VSS algorithm. The micro 

iterations that change only a single weight at a time allow for 

more precise exploration of the error surface. The same is 

true for iterative solutions to eigenproblems when updates 

are obtained after multiplication of a single row of 

diagonalized matrix by approximated eigenvector instead of 

the whole matrix-vector product [33].  

     VSS is able to find very good solutions and has very low 

memory requirements, making it suitable for large scale 

applications. This algorithm can be used as a reference for 

more sophisticated and computationally costly methods using 

stochastic or evolutionary search techniques. There is also 

plenty of room for improvement of different aspects of this 

algorithm, for example adding additional directions in the 

search process. Other algorithms that belong to this family, 

based on more sophisticated search techniques, should also 

be developed.   
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