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Thesis  
 

Algorithms based on systematic search techniques can be successfully applied for 

multilayer perceptron (MLP) training and for logical rule extraction from data using MLP 

networks. The proposed solutions are easier to implement and frequently outperform  

gradient-based optimization algorithms.  

 

 

 

 

Abstract 
 

Search-based techniques, popular in artificial intelligence and almost completely 

neglected in neural networks can be the basis for MLP network training algorithms. There are 

plenty of well-known search algorithms, however since they are not suitable for MLP 

training, new algorithms dedicated to this task must be developed. Search algorithms applied 

to MLP networks change network parameters (weights and biases) and check the influence of 

the changes on the error function. MLP networks considered in this thesis are used for data 

classification and logical rule-based understanding of the data. The proposed solutions in 

many cases outperform gradient-based backpropagation algorithms. The thesis is organized 

in three parts. 

 

The first part of the thesis concentrates on better understanding of MLP properties.  

That includes PCA-based projections of error surfaces and learning trajectories, trends and 

statistics of weight changes and visualization of hidden and output neuron activities. Since 

the network training is in fact realized by searching for a minimum on the error surface, the 

knowledge obtained from the error surface analysis can be incorporated in learning 

algorithms, thus making network training more efficient. Learning trajectories are placed on 

the error surface. Observing them can also suggest some improvements to the existing 

learning algorithms or can help with designing new ones. Visualization of the hidden and 

output neuron activities can suggest possible ways of clustering or removing some training 

data. Analysis of trends and statistics of weight changes provides more information that can 

be used to tune the training parameters. Several conclusions drawn from this research are 

used for designing and optimizing MLP learning algorithms in the second part of the thesis. 

 

The second part of the thesis introduces two search-based MLP learning algorithms: 

numerical gradient and variable step search algorithm. In contrast to the training algorithms 

that use analytical gradients, they impose no restrictions on transfer functions, error functions 

or neural connection structures. In particular computationally cheap, non-differentiable 

transfer functions can be used. Spurious local minima are a typical problem of algorithms that 

back-propagate the error to hidden layers. Because the influence of hidden layer weights on 

the network error is directly checked in search-based algorithms, the direction towards the 

minimum can be determined in each learning step more precisely. The advantages of search-

based methods include fast and reliable convergence, low variance of results obtained with 

different starting points, low memory requirements and simple implementation of the 

algorithms because complicated derivatives of the error function are not required. Although 

local optimization methods, including search-based ones, do not guarantee finding a global 

minimum for every problem, for the prevailing number of real-world problems the proposed 
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methods are sufficient. Only in rare cases the use of global optimization methods that require 

much higher computational effort may be required, giving a greater chance to find optimal 

solutions for complex problems.  

 

The third part of the thesis presents a search-based approach to logical rule extraction 

from data using MLP networks with quantized parameters. The network training is quite fast, 

frequently one training cycle is sufficient and the final network function is converted to 

logical rules using a simple analysis of the network weights. If needed, the network structure 

is dynamically adjusted to the dataset properties. Feature selection and data discretization are 

also automatically performed by the network. Various modifications of the method are 

presented, each generating a specific form of rules. Depending on the desired information one 

of the methods can be chosen.  
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Part 1 
 

Properties of Multilayer Perceptrons 
 

 

 

1.1.  Introduction 

 
An artificial neural network is a general mathematical computing paradigm that 

models the operations of biological neural systems [Hen 2002]. Research on artificial neural 

networks was originated in 1943 by McCulloch and Pitts [McCulloch 1943] who proposed 

the first mathematical model of a neuron. In 1958 Rosenblatt [Rosenblatt 1958] introduced 

the first neural network known as perceptron. All neural network models that have been 

proposed over the years, share a common building block known as a neuron and a networked 

interconnection structure. The most widely used neuron model is based on McCulloch and 

Pitts’ neuron and the most widely used neural network called multilayer perceptron is based 

on several sequentially connected layers of perceptrons. 

 

 In general, neural networks can be divided into feed-forward and recurrent networks. 

In recurrent networks, the output signals of neurons are by feedback also given as their input 

signals. In feed-forward networks, an output signal of a neuron has no more influence on its 

input – the signals are propagated only forward. Multilayer perceptron considered in this 

thesis belongs to the feed-forward networks.  

 

 

 

1.1.1. Neuron Model 
 

 

x1

x2

x3

1

w1

w2

w3

w0

YY=f(X,W)

 
Fig. 1.1. Neuron model. 

 

A neuron consists of two parts: the net function and the activation function. The 

activation function is also known as transfer function. The net function determines how the 

input signals are combined inside the neuron.  
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The most commonly used net function and the only one considered in this thesis is 

given by the following formula: 

 i

N

i

iwxu 



0

 (1.1) 

 
The parameters w are called weights. The weight w0 is called bias or threshold and its 

corresponding input signal x0 always equals 1 and does not form a connection between two 

neurons as other weights do. In the first and second part of the thesis the term “weight” is 

used as well for any weight connecting two neurons as for bias.  

 

 

Table 1.1. Commonly used neural transfer functions. 
 

transfer function formula comments 

hyperbolic tangent Y=(1-exp(-βu))/(1+exp(-βu))  

logistic sigmoid Y=1/(1+exp(-βu))  

threshold Y=a for u≤0, Y=b for u>0 usually a=-1 or 0, b=1 

linear saturated Y=a for u≤u1, Y=βu for u1<u<u2,  

Y=b for u≥u2 

usually a=-1 or 0, b=1 

linear  Y=βu used only in the output network layer 

for function approximation tasks, not 

used for data classification 

staircase  not suitable for analytical gradient-

based learning algorithms, usually b=1, 

a=-1 or 0 

 

 

 

 

             
 

            
 

Fig. 1.2. Commonly used neural transfer functions: a – hyperbolic tangent, b – logistic 

sigmoid, c – threshold, d – linear saturated (semi-linear), f – linear, d – staircase. 
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The output of a neuron denoted by Y is related to the output of the net function u by a 

transformation called activation (or transfer) function. Virtually any continuous non-linear 

and monotone function can be used as neural transfer function [Duch 1999b]. Moreover, if 

analytical gradient-based methods are used for network training, the functions must be 

differentiable. The transfer functions most commonly used for multilayer perceptron are 

summarized in Table 1.1. and their characteristics are shown in Fig.1.2. 

 

 

 

1.1.2. Multilayer Perceptron Model 
 

A single layer perceptron is able to classify only linearly separable data. For example, 

it is not able to solve the Xor problem. This fact was noticed by Minsky and Papert [Minsky 

1969] in their famous book “Perceptrons” in 1969. The book contributed to stagnation in 

research on neural networks for certain time. It was known that multilayer perceptron would 

solve linearly nonseparable problems, however efficient algorithms for training of MLPs 

were not known at that time. The first successful algorithm, called backpropagation, was 

developed several years later [Werbos 1974][Rumelhart 1986] and since that time the field of 

neural networks has been rapidly developing. 

 

A multilayer perceptron (MLP) is a network that consists of usually two or three 

layers of neurons and of an additional input layer. The input layer is counted by some authors 

as a separate network layer while by others it is not. In this thesis a three-layer network refers 

to a network of two layers of neurons based on the McCulloch and Pitts’ model and one 

additional input layer of neurons that only distribute the input signals, as shown in Fig.1.3.  

 

 

 
Fig. 1.3. Three-layer fully connected MLP network. Vertical arrows symbolize biases. 

 

 

 In practical implementations there is one input and one output layer and the number 

of hidden layers can be zero, one or two. During the training process the weights of the 

output layer and of all hidden layers are optimized. Two successive layers may but do not 

have to be fully connected. In addition, some weights that prove useless can be removed 

during or after the network learning process. An MLP network is said to be fully connected if 

every node in a given layer is connected to every node in the following layer. In some 

network architectures additional, so called “crossover” connections may be used that directly 

connect the input layer with the output layer (Fig.1.4). 
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Fig. 1.4. Three-layer MLP network with crossover connections. 

 

 

 

1.1.3.  Data Classification with Multilayer Perceptrons  

 
Classification is one of the most frequently encountered decision making tasks of 

human activity. A classification problem occurs when an object needs to be assigned into a 

predefined class (group) based on a number of observed features (attributes). [Zhang 2000]. 

Neural networks have emerged as an important tool for classification. 

 

The datasets used by neural networks can be organized in the form of two-

dimensional matrices. Each raw of the data matrix contains values of all features that describe 

a single point in the feature space, called a vector. Each vector is labeled with class 

information. Thus, the rows of the data matrix contain vectors and the columns contain 

features. A sample dataset organized in the matrix form is shown in Fig.1.5 

 

 

   

 Feature 1    Feature 2    Class 

    0               0                 0 

    0               1                 1 

    1               0                 1 

    1               1                 0 

 

Fig. 1.5. Representation of a sample dataset with class labels. 

 

 

The features can take numerical continuous, numerical discrete or symbolic values 

(e.g. red, yellow, green). Since MLP networks require numerical inputs, symbolic features 

must be represented by their numerical counterparts. There are two possible representations. 

In the first one, each symbolic value is assigned a numeric value and only one input neuron is 

used for a symbolic feature. In the second one, used in this work, each symbolic feature is 

represented by a vector of zeros and ones. The length of that vector equals the number of 

values that the feature can take. All positions in that vector are filled with zeros, except the 

position corresponding to the actual value of the feature, which takes the value of one. One 
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input neuron is created for each possible value of the feature, as shown in Fig.1.6. To reduce 

the number of inputs, one feature value can be considered as default. The default value does 

not require a corresponding input neuron – if it occurs in the data vector, than no signal is 

given to any input neuron. Using default values is especially convenient if there are only two 

discrete or symbolic values in a given feature. 

 

The data classification process consists of two phases. In the training phase the 

network learns to recognize which data vectors belong to given classes.  In the test phase the 

network is required to classify correctly vectors that have not been used in the training phase. 

 

Each output neuron is assigned a priori to one class. Only the output neuron assigned 

to the same class as the actual data vector should be activated and its signal should equal one. 

The signals of all other output neurons should be zero. Nevertheless, it is usually sufficient if 

the appropriate output neuron signal is higher than 0.5 and higher than the signals of all other 

output neurons. If this condition is satisfied, than we consider a given vector to be classified 

correctly. 

 

 

continuous

feature 1

symbolic

feature 2,

value 1

symbolic

feature 2,

value 1

 
Fig. 1.6. Each value of a symbolic or discrete feature is assigned to a separate input neuron. 

 

 

Usually before the training phase begins, all weights in the network are assigned a 

small random values, e.g. within the range (-1;1). Then the training dataset is given to the 

network inputs vector by vector and the signals propagate through the network. In an ideal 

situation, only the output neuron assigned to the same class as the actual data vector v is 

activated and its signal is one, the signals of all other output neurons are zero and the network 

gives zero error for this vector. In general, the error for a single vector is a function of the 

differences between the desired and actual signals of all output neurons. The total network 

error E is the sum of all single vector errors: 

 

 )( ,, 
v c

cvcv sdfE  (1.2) 

 

where d is the desired output signal and s is the observed output signal of the output layer 

neuron c in response to the training vector v. Many error functions f exist. The most 

frequently used error function is based on the mean squared error (MSE):  
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,, )( 
v c

cvcv sdE  (1.3) 

 

There is some ambiguity in the literature regarding MSE. According to some 

publications the formula (1.3) represents MSE, while according to other authors the error 

represented by (1.3) is called sum squared error (SSE) and the average error per single vector 

in a single output neuron is called MSE (1.4). 

 

 SSE
NN

MSE
cv

1
  (1.4) 

 

where Nv is the number of vectors in the training set and Nc is the number of output 

neurons (which usually equals the number of classes, unless there is a default class that does 

not have a corresponding neuron. No output neuron should be activated in response to the 

default class vector). However, since MSE is the rescaled SSE, the errors always change 

proportionally and the mentioned ambiguity practically does not cause any problems.  

 

The aim of the network training is to maximize the classification accuracy as well for 

the training dataset as for the test dataset. In order to achieve this, the training algorithm 

minimizes the value of the error function by adjusting values of network parameters. The 

network error is a function of many parameters, such as the training dataset, network 

connection structure and weight values. However, if we assume that the training data and 

network structure is not being changed during the training, the weight values are the only 

parameters of the error function. The network error function can be imagined as a 

multidimensional surface, with each weight defining one dimension. Thus, the training 

algorithms search for a minimum on the error surface.  

 

Except for very simple cases the training algorithms change the weight values 

iteratively many times. The training set is given to the network inputs vector by vector, the 

network error is calculated and the weights are adjusted in order to minimize the error. The 

process of propagating once the entire training set through the network is usually called an 

“epoch”. The process of performing one iteration of the training algorithm is called a 

“training cycle” (however sometimes it may also be called an “epoch”). Depending on the 

training algorithm one training cycle can contain a single epoch, several epochs or only a 

fraction of an epoch. 

 

In supervised learning the network is explicitly told to which class a given vector 

belongs. By contrast, in unsupervised learning, the network uses unlabeled data (without 

class information) and has to deduce the classes from data. MLP training algorithms belong 

to supervised learning methods. 

 

MLP training algorithms can be divided into several categories, such as analytical 

gradient-based, global optimization or search-based methods. Analytical-gradient based 

algorithms calculate the derivative of error function with respects to every weight and than 

change the weights in order to minimize the network error (by moving downwards on the 

error surface). Global optimization algorithms do not change the weights basing on the 

gradient direction but search for the minimum in much broader areas. Many methods belong 

to that group. Search-based methods proposed in this work belong to local methods that 

instead of analytical gradients use variants of search algorithms. Detailed discussion of MLP 

training algorithms is presented in the second part of this thesis. 
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An MLP network used for classification performs a mapping from the input (feature) 

space to the output (class) space.  The aim of the network training is to obtain such weights 

(and such network structure if it is also modified by the training algorithm) that the mapping 

reflects the structure of the data and not the single data points. This is known as 

generalization. The training data frequently contains some noise and the noise should not be 

reflected in the mapping. If a network generalizes well then it achieves similar classification 

accuracy on a training set and on a test set. A test contains vectors, which belong to the same 

data distribution, but which have never been used in the training process.  

 

Often the availability of data is limited and using a part of it as a test set is not 

practical. An alternative is to use the procedure of crossvalidation. In k-fold crossvalidation 

the training set is randomly divided into k subsets, the network is trained using k-1 subsets 

and tested on the remaining subset [Bullinaria 2002]. Typically k=10 is considered 

reasonable. The process of training and testing is then repeated k times, using each one a 

different subset as a test set. The average classification accuracy on the k test subsets gives 

the estimate of the network performance.  

 

 

1.1.4. Applications of Multilayer Perceptrons  
 

The advantages of neural networks over conventional programming lies in their 

ability to solve problems that do not have an algorithmic solution or the existing solution is 

too complex to be found. Problems that were unsolvable using logical systems are now being 

tackled using an artificial neural network approach [Pennington 2003]. 

 

Multilayer perceptron is the most widely used type of neural networks and thousands 

of applications of MLP networks are known. These problems are in areas as diverse as 

medical diagnosis [Sordo 2002][Adamczak 2001][Jankowski 1999], medical image 

recognition [Pincho 1993][Kabarowski 1999][Pennington 2003], time series prediction 

[Osowski 1996], data compression [Gabriel 2003][Verma 1999], defect detections in 

materials [Karras 2001], bankruptcy prediction [Altman 1994][Raghupathi 1996], music 

classification [Maihero 2004], solar collectors sensitivity analysis [Zarate 2004], handwriting 

recognition [Garris 1998][Lee 1993],viruses and internet worms detection [Bielecki 2004],  

and many others. The applications found for neural networks continue to grow at a rapid rate.  

 

 

 

1.1.5. Further Development of Multilayer Perceptrons 
 

Using neural networks problems can be solved without the need to understand how a 

solution is achieved. As long as there are a finite number of attributes to the problem and an 

expected result, neural networks can find a solution to the problem. This makes them a useful 

tool for anyone working on pattern recognition problems. Nevertheless, many people do not 

trust neural networks because they do not explain how they have reached the solution. 

Especially in medicine, where the knowledge of how the result has been obtained is 

important, many doctors do not want to use neural networks, in spite they have higher 

diagnosis accuracy than other systems [Sordo 2002]. Although some attempts were made to 

extract logical rules from trained neural networks, many people still consider them as black 

boxes [Duch 2001, 2004c]. 
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The aim of this thesis is not only to propose new algorithms for MLP training and 

logical rule extraction but also to explain, as far as possible, how the networks work. Thus, a 

great emphasis is placed on the understanding of neural learning processes. Frequently plots 

are used to show many interesting aspects, including visualization of high-dimensional MLP 

weight spaces. A better understanding of how the networks work also allows us to develop 

better algorithms for the network training and logical rule extraction. 
 

 

 

 

1.2. Visualization and Properties of MLP Error Surface 
 

 

1.2.1.  The Purpose of MLP Learning Visualization 
 

Visualization of learning processes in neural networks shows the dynamics of 

learning, allows for comparison of different network structures and different learning 

algorithms, displays training vectors around which potential problems may arise, shows 

differences due to regularization and optimization procedures, investigates stability of 

network classification under perturbation of original vectors, and allows for estimation of 

confidence in classification of a given sample. 

 

There are many known methods of high dimensional data visualization [Atkosoft 

1997][Naud 2001], however most of them are not suitable for visualization of learning 

processes in neural networks. Thus, several methods especially dedicated to MLP learning 

have been proposed in the literature. In a Hinton diagram [Hinton 1986] each weight value in 

the network is represented by a box. The size of the box gives the magnitude of the weight, 

whereas the color (e.g. white or black) indicates whether the weight is positive or negative. 

The Bond diagram [Wejchert 1991] visualizes the weights on the topology of the network. 

Units are represented as simple points, with “bonds” of varying length (weight magnitude) 

and color (weight sign) emanating from unit outputs towards other units. Wejchert and 

Tesauro [Wejchert 1991] also consider a trajectory diagram, which emphasizes the 

visualization of the learning process itself by representing the multidimensional coordinate 

system in a two-dimensional plane by a star-like projection. The projection allows weight 

vectors to be plotted radially component by component, but it is practically limited to about 

six weights in the network. The plots of two different weight values against the error 

function, which produce a two-dimensional slice of the n-dimensional error surface, have also 

been used in the literature [Gallagher 2000]. 

 

PCA (Principal Component Analysis) was used for three-dimensional visualization of 

backpropagation learning trajectories [Gallagher 2000, 2003], for visualization of learning 

trajectories of several training algorithms [Kordos 2004b, 2004c, 2005] and for visualization 

of MLP error surfaces [Kordos 2004a, 2004c]. Visualization of each layer neuron signals was 

considered in [Duch 2004a]. The dependencies between the gradient components and the 

error surface sections in particular directions [Kordos 2004d, 2005] and the changes of 

weight values can also provide information that can be practically used to tune some training 

methods. 
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The most interesting visualization methods together with several statistics from 

network trainings are presented in the following chapters. The purpose of that visualization is 

to enhance the understanding of neural network processes and to give some hints for training 

algorithms design and optimization. The practical conclusions from the study allow for 

shortening training times and increasing the stability and accuracy of network learning 

processes. In this part of the thesis, as well by “epoch” as by “training cycle” we will 

understand one iteration of the training algorithm, after which all the weights change their 

values. 

 

 

 

 

1.2.2.  MLP Error Surface 
 

The error surface (ES) E(W)=X||Y-M(X;W)|| of a neural network is defined in the 

weight space W (including biases as W0 weights) for a given set of training vectors X, desired 

output vector Y and a vector mapping M(X;W) provided by the neural network. Only the 

multilayer perceptron (MLP) networks are considered here. Probably it would be possible to 

use similar techniques to investigate other types of feedforward networks, however it has not 

been attempted yet. An MLP training process can be defined as a search for a global 

minimum on the hyper-surface E(W), where it creates a learning trajectory. 

 

 

 
 

Fig. 1.7. MLP error surface sections of Iris (4-4-3) in gradient directions obtained using 

numerical gradient training cycles 1÷5. 

 

 

One way to understand better the learning dynamics of MLPs is to visualize both the 

ES and the learning trajectory using projections of the original space into a two- or three-

dimensional subspace. The projection directions should preserve most information about the 

original surface. In two-dimensional visualizations, the error value is displayed on the vertical 

axis, and one direction in the weight space on the horizontal axis. A good choice is either the 

local gradient direction or the first principal component direction that is calculated in the 

weight space.  
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A sample plot showing the change of the mean squared error (MSE) in the gradient 

direction is shown in Fig.1.7. The training of an MLP with a single hidden layer composed of 

four nodes has been done on the Iris data, frequently used for illustrations (chapter 1.2.5.1). 

The numbers of neurons in successive layers are given in brackets after the dataset name. For 

example (6-4-3-2) means that the network has 6 inputs, 4 neurons in the first hidden layer, 3 

neurons in the second hidden layer and 2 neurons in the output layer. The lines in Fig.1.7. 

were created by changing the length of the weight vector W in the gradient direction h. The 

starting point (h=0) for each line is in the minimum found along the previous training cycle 

gradient direction. The first curve has a narrow and deep minimum, indicating that a rather 

narrow funnel is traversed on the error surface. The second and the subsequent curves reach 

lower error levels and are broader, indicating that a broad plateau has been reached. This 

should be expected in all problems where separation of different categories is relatively easy 

and the error surface should be insensitive to weight changes corresponding to rotations and 

shifting of decision borders that do not affect the separation.  

 

It seems worthwhile to investigate the error surfaces not only in two, but also in three-

dimensional spaces. PCA (Principal Component Analysis) is a natural choice for visualizing 

the weight space because it provides components from which the original weight space may 

be reconstructed with the highest accuracy.  

 

Fig.1.8-left shows the error surface projection into two principal components c1 and 

c2, which has been obtained using weights from the same network training, as the error 

surface sections shown in Fig. 1.7. The learning trajectory lies on the bottom of one of the 

ravines. Beginning the training from another starting point could result with the trajectory 

lying on the bottom of another ravine. Learning trajectories will be discussed in chapters 1.3, 

2.3.9 and 2.4.4. 

 

 

 

1.2.3.   Research Methodology 
 

 

1.2.3.1.   Overview of Research Methodology 

 

In order to visualize the error surface the following procedure is used: 

 

1. A network is trained using either standard backpropagation [Rumelhart 1986][Hen 

2002][Bullinaria 2002], Levenberg-Marquardt second-order algorithm [Ranganathan 

2004][Marquardt 1963], scaled conjugate gradient [Moller 1993], numerical gradient 

[Kordos 2003b], the simplest search-based method that changes one weight at a time 

[Kordos 2003a] or its modified version with variable step search [Kordos 2004b]. It is 

worth to remark now that the experimental results do not depend significantly on the 

training algorithm.   

2. Weight vectors W(t) after each training cycle t are collected into the weight matrix WM. 

3. PCA (Principal Component Analysis) is performed on the weight covariance matrix (the 

covariance matrix of the weight matrix). 

4. Three-dimensional error surface projections are plotted. The horizontal axes correspond 

to the first and second PCA direction and the vertical axis shows the network error value.  
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1.2.3.2.   Principal Component Analysis 

 

Principal Component Analysis (PCA) is a technique that reduces the data 

dimensionality while preserving as much of the high dimensional space properties as 

possible. PCA is performed by a rotation of the original high dimensional coordinate system 

and then discarding the axes along which the data has the smallest variance. The rotation is 

done in such a way that the variances along the successive axes decrease as quickly as 

possible.  

 

Each weight vector W(t)=[w1t,…,wnt] is defined by a single point in the weight space. 

The training produces a set of points, on which PCA can be performed. Weight vectors after 

each training cycle t are collected into the weight matrix WM:  
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where T is the number of training cycles. PCA can be performed either directly on the weight 

matrix WM or on the weight covariance matrix CM:  

 

 



















nnn

n

cc

cc

...

...

1

111

CM  (1.6) 

 

The covariance matrix is a symmetric matrix, its entries cij are calculated as 
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and they represent the covariance between the weight wi and wj, where T is the number of 

training cycles, n is the number of network weights and the mean weight value is calculated 

as 
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The eigenvectors vi and their corresponding eigenenvalues λi of the weight covariance matrix 

are the solution of the characteristic equation: 

 iii vv  CM ,  for i=1,…,n  (1.9) 

If the weight vector has n components, the characteristic equation becomes of order n. 

This is easy to solve only if n is small. Solving eigenvalues and corresponding eigenvectors is 

a non-trivial task, and many methods exist. One way to solve the eigenvalue problem is to use 

a procedure called singular value decomposition (SVD) [Kalman 2001]. The SVD procedure 

presented in “Numerical Recipes in C” [Press 1992] was used in the calculations. By ordering 
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the eigenvectors in the order of descending eigenvalues (largest first), we can create an 

ordered orthogonal basis with the first eigenvector having the direction of largest variance of 

the data [Hollmen 1996]. The data variance in a given eigenvector direction is proportional to 

the eigenvalue corresponding to the eigenvector. In this way, the directions in which the data 

has the most significant information can be found. Let V be a matrix consisting of 

eigenvectors of the covariance matrix as the row vectors. By transforming the weight vector 

W(t), we get  

    WWVY  )(t  (1.10) 

which is a point in the orthogonal coordinate system defined by the eigenvectors. Thus, the 

axes of the new coordinate system are in the eigenvector directions. Components of Y can be 

seen as the coordinates in the orthogonal basis. We can reconstruct the original weight vector 

W(t) from Y by  

 WYVW  Tt)(  (1.11) 

using the property of an orthogonal matrix V
-1

 = V
T
. The data variance in each eigenvector 

direction, which will be further called simply the first, second and so on PCA direction is 

proportional to its corresponding eigenvalue. Only some directions with the greatest variance 

are preserved and all remaining directions are discarded.  

SVD can be calculated either on the weight matrix or on the weight covariance 

matrix. The resulting plots are of similar nature, although the eigenvalue distribution is 

different. A weight matrix gives a smaller first to second eigenvalue ratio and bigger the least 

significant eigenvalues, but in both cases the first and second PCA directions typically 

contain about 95÷97% of the total variance. Nevertheless,  SVD on the covariance matrix has 

a significant advantage: the error surface projections obtained in the experiments differ less 

from training to training (are less influenced by the random initial distribution of weights). 

For this reason all plots presented here are based on SVD on the covariance matrix, except 

for the two sample ES presented in Fig.1.11.  
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1.2.3.3.   Plot Construction 

 

Vertical axis in the plots shows the relative error E=E(W)/NVNC, where NV is the 

number of vectors and NC is the number of classes in the training set. For all error functions 

based on Minkovsky's metric |||| the error function is bounded from above by NVNC, thus the 

relative error E is bounded by 1. Horizontal axes show distances in the weight space in c1 and 

c2 PCA directions corresponding to the first and second eigenvector of the weight covariance 

matrix. Thus in a given point (c1,c2) of the plot the network weight vector W(c1,c2) is 

determined by the following equation: 

 

 2211021 ),(  cccc WW  (1.12) 

 

where v1 is the first and v2 is the second eigenvector of the weight covariance matrix, c1 and c2 

are the distance along the horizontal axes and W0 is the vector of constant weights. In most of 

the plots W0 consists of zero weights for the simplicity reason because W0  containing the 

mean weight values during the training produces plots that look very similar and that are only 

horizontally shifted. The aim here is to find the most interesting projection directions. The 

equation (1.11) refers to the data from the weight matrix. When the plot is drawn it uses only 

the PCA-based directions, but particular points on the error surface are not present in the 

weight matrix, thus the equation (1.12) as the generalized version of (1.11) is used for error 

surfaces. However, the equation (1.11) always applies to the visualization of learning 

trajectories in the PCA-based directions. Non-zero W0 vectors are considered in chapters 

1.2.10.2 and 1.3.  

 

The character of ES is determined by the dataset and network structure. In the 

experiments MLP networks were trained for data classification for as many training cycles as 

were required to bring them close to convergence. There was not a strict stopping criterion, 

since the results were very little sensitive to the stopping point, but in most cases the trainings 

were stopped when the error decrease reached about 95% of the possible error decrease. 

Sometimes the stopping point was intentionally determined in another way in order to show 

some phenomena, but this will be mentioned explicitly. The number of epochs varied 

depending on a training algorithm and a dataset. At the final training stage weights of output 

neurons tend to grow quicker then those of hidden neurons, but since the training was stopped 

before convergence, weights of each layer had still comparable contributions in determining 

PCA directions. The training was repeated several times for a given method with various 

random initial weights. 

 

Neither the random weight distribution nor the training method has significant 

influence on the shape of ES presented in the space of the two main PCA components. The 

projection of error surface for a given dataset and network structure may differ a bit - it may 

rotate from one plot to another, its elements may be a bit higher or lower, but the overall 

structure is well preserved. 

 

To obtain the most reliable ES projections, PCA should be calculated using the weight 

matrix containing data from the training cycles ranging from the initial weights (from the 

starting point) to that point when the error begins to change very slowly. Otherwise, 

especially if the initial training cycles with rapid error changes are omitted, some distortion 

described in later chapters will appear. 
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In most of the plots presented here logistic sigmoids are used as neural transfer 

functions but ES projections obtained with hyperbolic tangent do not differ significantly. 

Also some examples of ES obtained with other types of transfer functions will be presented. 

 

Over 20 datasets were used in the experiments, about half of them comes from the 

UCI machine learning database repository [Mertz 1998]. To be concise only one ES typical 

for a given situation will be shown; the others are qualitatively similar.  

 

 

 

        
 

Fig. 1.8. Left: MLP error surface of Iris (4-4-3) displayed in two PCA directions, the plot was 

made using the same data as in Fig.1.7. Right: MLP error surface of Iris (4-4-3) showing 

more faithfully how the ES might look like. 

 

 

Although PCA projections seem to be very good for ES visualization they do not 

reveal certain aspects of the original ES. The detailed reasons for this will be discussed in 

later chapters. At this stage three major differences between the original ES and their PCA 

projections are worth pointing out:  

 

 The ravines in which the training trajectories lie are curved, not straight as shown in 

the PCA projections. 

 The original ravines tend to be steeper (starting higher and ending lower) than those 

shown in PCA projections. 

 Sometimes shallow local minima close to the ES center are visible in PCA 

projections, although they do not exist in the original ES. 

 

Fig. 1.8-right is a modified version of fig.1.8-left that shows how the real ES might 

look like, addressing the points mentioned above. It can be only imagined or visualized if the 

projection directions are different in different fragments of the plot, however the detailed 

approaches to such a visualization model have not been attempted yet. 

 

Typically the first and second PCA directions contain together about 95% of the total 

variance and therefore, despite of the three shortcomings mentioned above, the plots reflect 

ES properties quite well. There is a strong correlation between the growth of a given weight 
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during the training growth(w) and its corresponding entry in the first principal component  

”1st PC(W)” (in the first eigenvector of the weight covariance matrix) (Fig. 1.9-left). The 

entries in the further principal component vectors seem to be uncorrelated with value of 

growth of their correspondent weights (Fig. 1.9-right).  

 

 

Table 1.1. Eigenvalues and variance captured by the PC-th PCA component for the same 

training as in Fig.1.7 and 1.8. 
 

PC 1 2 3 4 5 6 7 8 9 10 

eigenvalue 33.204 1.4550 0.5969 0.2554 0.1578 0.0679 0.0547 0.0324 0.0265 0.0191 

% current 

variance 
0.9245 0.0405 0.0166 0.0071 0.0044 0.0019 0.0015 0.0009 0.0007 0.0005 

% total 

variance 
0.9245 0.9651 0.9817 0.9888 0.9932 0.9951 0.9966 0.9975 0.9982 0.9988 

 

 

 

      
  

Fig. 1.9. Left: Correlation between a given weight entry in the first eigenvector of the weight 

covariance matrix  1st PC(W) and the weight growth during the training growth(w) of Iris (4-

4-3). Right: Correlation of the 2nd PC(W) and growth(w) for the same training as in Fig. 1.7 

and 1.8. 

 

 

ES plots are based on weight matrices containing the weights from network trainings, 

which minimize the network error. Thus, the trajectories traverse rather the parts of the 

weight space with lower error values than the parts with higher error values. As a result, we 

can see the projected ES rather in the bottom than in the top part of the cube. It is not 

recommended to try to traverse and display a more diverse area of the weight space by 

combining the weights from several trainings into one weight matrix because the average 

value of each weight in such a matrix tends to zero as the number of trainings grow, as a 

result the ES projection approaches a horizontal plane. 
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1.2.3.4.   Independent Component Analysis 

 

 

 
Fig. 1.10. The data in this figure is clearly divided into two clusters. However, the principal 

component, i.e. the direction of maximum variance, would be vertical, providing no 

separation between the clusters. In contrast, the strongly nongaussian independent component 

direction is horizontal, providing optimal separation of the clusters. (the figure comes from 

www.cis.hut.fi/aapo/papers/NCS99web/node8.html) 

 
 

PCA projections are in the directions of maximum variance, thus even if the data is 

clearly divided into two clusters, PCA may not reveal this structure. ICA (Independent 

Component Analysis) projections are in the maximally nongaussian directions, providing 

usually good separation of clusters, though not necessarily the directions of maximum 

variance [Leino 2004]. So the ICA-based approach may show some additional ES properties, 

not visible in PCA projections, and produce generally more complex ES projections with 

more details.  

 

ICA starts with a vector of observations x (frequently PCA is used as data 

preprocessing for ICA and x is then the original vector projected into the PCA directions): 
 

 ),...,( 1 nxxx  (1.13) 

 

The basic assumption here is that each of these observations can be derived from a set of n 

independent components: 
 

 ninii sasa  ...11x  (1.14) 

 

or, using a matrix notation, x=As. Here s=(s1,...,sn) is a random vector – the latent variables, 

or independent components, and A is a m x n mixing matrix. The task of ICA is to find both s 

and A. However, the matrix W=A
-1

 is directly searched for, so that the sources s=Wx can be 

estimated from vector x of the observed signals by optimizing a statistical independence 

criterion. The basic assumption of ICA is that the components si are independent of each 

other, that is P(si,sj)=P(si)P(sj).  

 

 The entropy H of a random vector x of density px(u) is defined as 
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 duupuppH xxx )(log)()(   (1.15) 

 

H(px) is maximal for a gaussian random vector x. The negentropy J is defined by the 

difference of entropy between x and a gaussian random vector xg of the same covariance 

matrix as x: 
 

 )()()( xxg pHpHxJ   (1.16) 

 

The FastICA algorithm [Hyvarinen 1999, 2001] uses the following estimation of negentropy: 
 

 2)]}([)]([{)( gxgExgExJ   (1.17) 

 

where g is any non-quadratic function. The maximization of the measure of negentropy is 

done by an iteration scheme, which for one independent component w is: 

1. choose an initial (e.g.) random weight vector w 

2. w
+
 ← E{x g(w

T
x)} - E{g’(w

T
x)}w, with g(u) = tanh(u), or g(u) = u exp(-u

2
/2) 

3. w ← w
+
 / ||w

+
 || 

4. if not converged (i.e. if old and new w point in different directions), go to 2 

 

The algorithm can be run for each independent component i. To prevent different vectors wx 

from converging in the same direction, the vectors are decorrelated after every iteration, 

using for example the decorrelation of matrix W: 
 

 W = (W W
T
)
-1/2

 W (1.18) 

 

  The FastICA algorithm was used in the calculations, resulting in very similar 

projections to those obtained with PCA on the covariance matrix. The global character of 

both projections is the same, only some more details are visible in ICA projections, mainly as 

the folded ridges (Fig.1.11-left). 

 

 

      
 

Fig. 1.11. A comparison of Iris (4-4-3) error surface projection in ICA directions (left) and 

PCA directions calculated by SVD on the weight matrix (right) for the same training as in 

Fig.1.7 and 1.8. 
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The first ICA direction is almost parallel to the first PCA direction with the cosine 

between them about 0.99, but the second directions seem uncorrelated with the cosine 

between them usually below 0.3. Change of various FastICA algorithm parameters (e.g. the 

function g) did not noticeably change the plots. Generally, the hopes to see much more details 

that would reveal some more ES aspects using ICA-based projections were disappointed. 

Thus, only one plot obtained with an ICA-based projection is presented in this thesis for 

comparison (Fig. 1.11-left) and all further plots are shown in PCA-based projections. 

 

 

1.2.3.5.   Two-weight Coordinate System 

 

Coordinate systems based on any two-weight directions do not provide so much 

information as PCA systems. A large number of error surface projections of networks with 

more than 1020 weights are composed of four horizontal planes, which are sometimes 

reduced to two or even a single plane. The surfaces have similar characters for many datasets 

and network architectures and resemble the ES projection shown in Fig. 1.12-left. More 

complex shapes of ES projection in two-weight systems are rare for medium to large 

networks. 

 

In networks with significantly more hidden neurons then the number required to learn 

the task, the neurons perform highly redundant roles. In that case changing any two weights 

of the trained network does not change the error because then signals propagate through the 

redundant paths and ES in a two-weight system creates only one horizontal plane. 

 

 

1.2.4.   Network Structure Influence on Error Surface 
 

Networks without hidden layers have very simple ES consisting only of some 

horizontal or slightly inclined half-planes, situated on various heights, with slopes connecting 

them (Fig.1.12-left). 

 

 

      
 

 

Fig. 1.12. Left: ES of a 2-layer network (Iris 4-3). Right: ES of a 4-layer network (Iris 4-4-4-3). 
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ES of networks with hidden layers has a starfish structure. An interesting depiction of 

it was given by Denker et. al. [Denker 1987] ”E(W) surface resembles a sombrero that has 

been warped in certain symmetric ways: near the middle (w=0) all configurations have 

moderately bad E values. Radiating out from the center are a great number of ridges and 

valleys. The valleys get deeper as they go out, but asymptotically level out. In the best 

valleys, E is exactly or asymptotically zero, other valleys have higher floors”. Pictures 

presented in this thesis confirm that global minima rarely create craters but frequently ravines 

reaching their minimum in infinity. This corresponds to the infinite growth of (usually output 

layer) weights when continuing the training enough long.  

 

Each of h hidden neurons may be labeled with an arbitrary and unique number from 1 

to h. Renumerating the network parameters does not change the mapping implemented by the 

network, thus giving h! permutational symmetries. A neural activation function for which 

f(-x)=-f(x)+const gives further 2
h
 sign-flip symmetries [Sussmann 1992]. This gives together 

2
h
h! equivalent global minima. A training algorithm converges to that minimum which is the 

easiest to reach from the starting point. Only some of the minima are clearly visible in the 

PCA projections.  

 

Four layer networks have more complex ES than the three layer ones, even with fewer 

neurons. Thus they can map more complex data (Fig.1.12-right). In 3-layer networks with 

crossover connections (Fig. 1.4) the output layer is connected directly to both: the input (as in 

2-layer networks) and hidden layer (as in 3-layer networks). Consequently their ES displays 

features of 2-layer networks (low symmetry of ES) and 3-layers networks (complexity of ES) 

(Fig.1.13-left). 

 

 

      
 

Fig. 1.13. Left: ES of a 3-layer network with crossover connections (Iris 4-4-3). Right: ES of 

a 3-layer network with too many hidden neurons (Iris 4-100-3). 

 

 

Too few neurons in any hidden layer make a bottleneck and the network cannot learn 

the task. The ES consists of some horizontal planes all placed relatively high with some 

disturbances between them, but does not contain the characteristic ravines leading to global 

minima (not shown here). 



 27 

The number of global minima visible in PCA projections initially grows when the 

number of hidden neurons increases, but with too many hidden neurons big horizontal planes 

begin to appear (Fig.1.13-right). This effect caused by the weight redundancy is visible more 

clearly in two-weight coordinate systems, where the projected ES is almost flat since many 

weights must be changed at the same time to change the error. 

 

 

 

1.2.5.   Training Dataset Influence on Error Surface 

 

 

1.2.5.1.  Description of the datasets used in experiments 

 

 

 

       
 

       
 

Fig. 1.14. The distribution of class instances shown in the space of two most informative 

features. Left-top: Iris, right-top: Breast, left-bottom: Ionosphere, right-bottom: Appendicitis. 

 

 

1. Iris (Fig.1.14.left-top): 4 continuous features (sepal-length, sepal-width, petal-length, petal-

width), 3 classes, 150 vectors, 50 in each class. Two of the features (petal-length, petal-

width) are most informative for classification, the remaining two features are more noisy 

and do not provide additional information. Although the classes are well separated, three 
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classes make the training a bit longer than the training of the Breast dataset. The accuracy 

that may be achieved in 10-fold crossvalidation is about 96%. The dataset is publicly 

available at UCI [Mertz 1998]. 

 

2. Wisconsin Breast Cancer (Fig. 1.14.right-top):  10 continuous features (f1,...,f10), 2 classes 

(class 1-red cross in , class 2-blue square), 699 vectors, 458 in class 1 and 241 in class 2. 

The classes are separated rather well, the set is very easy for training. The possible 

accuracy in 10-fold crossvalidation is about 96%. The dataset is publicly available at UCI 

[Mertz 1998] and described in chapter 3.2.12.4. 

 

3. Ionosphere – training dataset (Fig. 1.14.left-bottom):  34 continuous features (f1,...,f34), 2 

classes , 200 vectors, 100 in class ‘good’ and 100 in class ‘bad’. The classes are not so well 

separated as in the two first datasets. The possible accuracy in 10-fold crossvalidation is 

about 94%. The dataset is publicly available at UCI [Mertz 1998]. 

 

4. Appendicitis: 10 continuous features (f1,...,f10), 2 classes (class 1-red cross in Fig. 

1.14.right-bottom, class 2-blue square), 106 vectors, 21 in class 1 and 85 in class 2 

(strongly asymmetric class distribution). The classes are not so well separated as in the two 

first datasets. The possible accuracy in 10-fold crossvalidation is about 89%. The dataset is  

described in chapter 3.2.12.3. 

 

 

 

1.2.5.2. Experimental Results 

 

 

      
 

Fig. 1.15. Left: ES of Breast (10-4-2) The arrow shows a point to which the jump described 

in chapter 1.2.10.2 was made . Right: ES of Ionosphere (34-4-2).  

 

 

A similar network structure x-4-2 has been used for various datasets. Generally the 

following tendencies can be observed:  

 More complex training datasets produce more complex ES with more ravines, 

especially for data that is not approximately linearly separable. 

 Equal classes of examples lead to a more symmetric ES.  
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Breast (Fig.1.15-left) has two classes with few overlapping vectors and therefore the 

simplest ES. Iris (Fig.1.8-left) has 3 classes with little overlap and Ionosphere (Fig.1.15-right) 

2 classes with more overlap – they both give similar ES.  

 

Appendicitis (21 vectors of class 1 and 85 of class 2) gives a highly non-symmetric 

ES (Fig.1.16-left). Setting the network weights (chapter 1.2.9) to the values represented by 

the appropriate parts of the error surface indicates that the big flat area situated in the front 

part of the plot corresponds to the majority classification accuracy (for the points located on 

this fragment of ES the predicted class is class 2). Frequently training of datasets with 

unbalanced classes is more difficult because this part of ES is very flat and very broad. It is 

easy to get there, but difficult to leave this area. The ravines between this part and the higher 

situated areas in the back of the plot correspond to the optimal classification accuracy (about 

90-92% in the case of Appendicitis). But the same dataset with only 42 vectors left (all of 

class 1 and randomly chosen 21 vectors of class 2) produces a quite symmetric ES (Fig.1.16-

right). The topic of unbalanced classes will be further discussed in chapter 1.6. 

 

An n-bit parity is a problem, where the dataset has n features and two classes. Each of 

the features can take two values: zero or one. If an even number of features in a given vector 

take the value of one then the vector belongs to the first class, otherwise it belongs to the 

second class. Xor, which is a 2-bit parity problem, is linearly non-separable and therefore has 

a complex ES (Fig.1.17-left). 6-bit parity is linearly non-separable and has 32 clusters per 

class (Xor has only two) and its ES is very intricate, however symmetric because the number 

of vectors in each class is equal (Fig.1.17-right). Moreover, datasets that are easier for 

training have error surfaces with broader valleys, while the error surfaces of difficult datasets 

have only narrow ravines. 

 

 

 

      
 

Fig. 1.16. Left: ES of entire Appendicitis dataset (7-4-2). Right: ES of Appendicitis dataset 

(7-4-2) with only 42 vectors – all 21 vectors of class 1 and randomly chosen 21 vectors of 

class 2. 
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Fig. 1.17. Left: ES of Xor (2-2-2). Right: ES of 6-bit parity (6-8-2). 

 

 

 

1.2.6.   Transfer Function Influence on Error Surface 

 

1.2.6.1.   Monotone Transfer Functions 

 

 

 

 
 

Fig. 1.18. Transfer functions: a) sigmoid with offset, b) stretched sigmoid, c) staircase 

function. 

 

This chapter contains examples of error surfaces with various transfer functions, such 

as a sigmoid with offset, a staircase function and a stretched sigmoid. The purpose of 

introducing the functions is to prevent the weights from an infinite growth and in the case of 

a staircase function also to simplify the calculations. 

  

Discontinuities  are visible in the plot of ES obtained with a staircase function and 

with a sigmoid with offset. Both functions give a similar ES (Fig.1.19-right) with the 

distinguished feature of sharp edges. The differences are visible in a smaller scale; the 

sigmoid with offset gives smooth surfaces with curbs (Fig.1.20-left), while the staircase 

function produces quite irregular surfaces (Fig.1.20-right). Both the offset increase and the 

decrease of the number of stairs make the training more difficult and produce sharp edges on 

the ES. Moreover, these transfer functions are not continuously differentiable and impose 

problems to analytical gradient-based methods. The stretched sigmoid does not cause any 
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sharpness on the error surface and in this way it differs from the two previous transfer 

functions. With a small stretch (1.011.1) it seems to be an optimal solution. But with a 

bigger stretch the function becomes similar to a step function and has a limited usefulness for 

complex datasets – the error surfaces are becoming simple with big flat areas (Fig.1.19-left). 

 

 

 

      
 

 

Fig. 1.19. Left: ES of Ionosphere (34-4-2) with stretched sigmoid (stretch=1.3). Right: ES of 

Iris (4-4-3) with staircase transfer function (5 stairs).  
 

 

 

 

      
 

Fig. 1.20. Left: ES of Iris (4-4-3) with sigmoid with offset=0.2 visible with large zoom. 

Right: ES of Iris (4-4-3) with staircase function (11 stairs) visible in a big zoom.  
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1.2.6.2.   Non-monotone Transfer Functions 

 

 

 

      
 

Fig. 1.21. ES of Xor (2-2-2) with sinusoidal transfer function S=0.3+0.9·sin(0.3·x). 

 

 

Non-monotone transfer functions produce lots of local minima. Fig.1.21 shows ES of 

Xor (2-2-2) with a sinusoidal transfer function. The training of the network was successful 

because during the training all weight remained in the monotone interval of the sinusoid (-

/2; /2).  ES visible in this figure has nothing in common with ES of MLPs with monotone 

transfer functions, such as widely used logistic sigmoid and hyperbolic tangent, where local 

minima are very rare for real-world datasets, although they may exist as an effect of 

superpositions of two or more sigmoids. Mainly an ill-conditioning, large flat areas and 

choosing a wrong ES ravine cause many difficulties for training algorithms. 

 

 

 

1.2.7.   Local Minima 
 

The most well-known difficulty that arises in general optimization problems is the 

issue of local minima. Mathematical programming and optimization research was originally 

concerned with univariate problems, or with solving systems of equations involving only a 

few variables. In the one-dimensional case, the concept of local minima follows closely from 

the issue of convexity. The conceptual picture is that if there are no local minima, then the 

optimization problem is trivial, and the cost function resembles a parabolic bowl or a single 

valley. This picture has persisted in MLP research, perhaps mainly because it was used to 

explain the failure of backpropagation to learn, and because the large amount of techniques 

from optimization being applied to the development of training algorithms [Gallagher 2000].  

 

Rumelhart stated that the occasional failure of MLPs to learn simple problems 

including Xor was caused by local minima [Rumelhart  1986b]. This together with the 

experience from the low-dimensional optimization problems led to a widespread perception 

that local minima are the greatest obstacle in successful MLP learning (if the training was 
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successful, then the algorithm found a global minimum, whereas if the training did not 

progress satisfactorily then the algorithm was stuck in a local minimum). A good example of 

the widespread improper conceptual picture can be found in [Wilson 2003], where a picture 

very similar to Fig.2.21 is placed followed by a comment “there may be many thousands of 

weights, making the error surface difficult to visualize”. 

 

Some authors claimed that the ES of Xor 2-2-1 and Xor 2-1-1 (with cross-over 

connections) contain local minima [Blum 1989 ] [Lisboa 1991] [Gori 1992] [Horikawa 1993] 

by which backpropagation can become trapped.  

 

However, a more detailed analysis of the problem revealed that the error surface of 

both Xor 2-1-1 [Sprinkhuizen 1996] and Xor 2-2-1 [Hamey 1995] [Hamey 1998] networks 

have no local minima. All stationary points in the 2-1-1 Xor problem are saddle points and 

there exist finite trajectories, which allow escape, without increasing the error, from all finite 

stationary points. Thus the points are not local minima. It was also shown [Sprinkhuizen 

1998] that all stationary points with finite weights are saddle points with positive error or 

zero error and not local minima. 

 

Overall, the analysis of the Xor error surface indicates that local minima are not the 

cause of poor training performance for algorithms such as backpropagation. Other features, 

such as saddle points and plateaus, seem more likely explanations of training difficulties. 

Coetze [Coetze 1997] indicates that empirical MLP error surfaces have an extreme ratio of 

saddle points to local minima. 

 

It is known that MLP error surfaces are often ill-conditioned [Le Cun 1991],  

[Saarinen 1993], with the Hessian eigenvalues differing by orders of magnitude. This fact 

means that there are often directions on the error surface in which the gradient varies quickly 

(cliffs or steep ravines) and others, where the gradient variation is quite slow (plateaus or flat 

regions) [Hecht  1990 ] [Lehr 1996]. For an algorithm such as backpropagation with a fixed 

step size, this feature leads to periods of very slow progress, sudden drops and oscillations in 

the error values.  

 

There are several factors that contribute to the ill-conditioning in MLP error surfaces. 

The properties of transfer functions are reflected in the properties of the error surface, as it 

was seen in the ES projections obtained with various transfer functions. The sigmoids and 

still more their superpositions cause the ill-conditioning. Attempting to make sure the 

sigmoids in the network operate effectively in their useful regions is one way to reduce the 

effects of ill-conditioning  [Le Cun 1998]. Very small training sets may also contribute to ill-

conditioning [McKeown 1997]. 

 

The local minima were never visible in the ES projections, while the ill-conditioning 

effect was frequently. Though it was shown that local minima can exist [Sontag 1989], they 

are important mostly from the theoretical point of view, while ill-conditioning has much more 

direct and practically important effect on the training algorithms performance. 
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1.2.8.   Error Function Influence on Error Surface 

 

Using MSE error function with desired output signals 0.1 and 0.9 (or 0.2 and 0.8) 

produces very similar ES as with desired outputs 0 and 1 but a global minimum tends to lie 

close to the ES center in a shallow valley (not shown here). 

 

 

1.2.8.1.   Different Exponents in Error Function 

 

An error surface depends also on the power exponent of the error function. Typically 

MSE functions (exponent=2) are used but for exponents ranging from 0.5 to 8.0 error 

surfaces look very similar to those obtained with MSE. 

 

Two plots of error surfaces obtained with the exponent = 0.1 and 32 are shown here. 

High error exponents successfully reduce the weight growth and can be used as a weight 

regularization method. The learning trajectory remains near the ES center. For Iris (4-4-3) the 

length of the weight vector never exceeded 25, no matter how long the training was and the 

network was always successfully trained. Low exponents produce ES with relatively high 

plateaus and the slopes the ES fall down very slowly. With the exponent = 0.1 it is usually 

enough to reduce the distance error by 20% to achieve the same classification accuracy on a 

training set, as would require reducing MSE by 90%. However, the network training with 

such low exponents of the error function may be difficult. 

 

 

 

   
 

Fig. 1.22. Left: ES of Iris (4-4-3) with power function exponent=32. Right:  ES of Iris (4-4-3) 

with power function exponent=0.1. 
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1.2.8.2.   Weight Regularization 

 

The regularization term is added to the error function to prevent the weights from 

excessive growth in order to provide better generalization (chapter 2.6.3). In the simplest 

weight decay model the penalty term for big weight values is added to the error function as 

the sum of  the weight squares. The error function is: 

 

  
i

i

v c

cvcv wcsdfE 2

,, )(  (1.19) 

 

The error surface then lifts up, less near the center and more further from the center, 

thus we can see a superposition of the original ES with the paraboloid caused by the 

regularization term. The effect is stronger for bigger c values. A plot for the Breast dataset 

with c=0.03 is presented in Fig.1.23.  

 

 

      
 

Fig. 1.23. ES of Breast (10-4-2) with weight regularization, c=0.03. 

 

 

 

1.2.8.3.   Cross-Entropy Error Function 

 

Solla [Solla 1988] showed that for a cross-entropy error measure, the error surface is 

steeper in the region of a minimum, in comparison to MSE function. Thus, using the cross-

entropy error function can improve the network convergency close to the minimum. 

 

The cross-entropy error function is given by the following formula: 

 

   
v c

vcvcvcvc STSTE )1ln()1(ln  (1.20) 

 

where v is the vector number, c is the output neuron number, corresponding to the class 

number, T is the desired output neuron signal and S is the actual output neuron signal The 

error is summed over all vectors v and all output neurons c. But since for (S=0 ,T=1) and 

(S=1,T=0) the function takes infinite values the following modification is used: 
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(1.21) 

where d is a small (about 10
-10

) positive number.  

 

Comparing to MSE or other power error functions, cross-entropy error functions give 

similar or more complex ES. Fragments of the ES are higher then 1, due to the fact that the 

error is not bounded by NvNc as in the case of power error functions. 

 

 

 

      
 

Fig. 1.24. Left: ES of Appendicitis (7-4-2) with cross-entropy error function. Right: ES of 

Xor (2-2-2) with cross-entropy error function. 

 

 

 

 

1.2.9.   Weight Changes on Error Surface 

 

 Using the principal components, from the equation (1.12) we can calculate the weight 

values at any point of the projected error surface:  
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On average the weight values in the areas of lower error are more symmetric with respect to 

zero and the disproportions between the values of different neuron weights are smaller. 

However, the tendencies are not very strong. 
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Fig. 1.26. Left: ES of Iris (4-4-3). Right top: weight values in the point with low error (red 

line intersecting the ES). Right bottom: weight values in the point with high error (blue line 

intersecting the ES). In violet: hidden neuron weights, in red: output neuron weights.   

 

 

 

1.2.10.   Reducing the Number of Effective Parameters 
 

PCA is a well-known technique, widely used for the preprocessing of training data to 

reduce the number of network inputs. PCA was also proposed for weight pruning [Levin 

1994]. In this section the possibility to use of PCA to reduce the number of effective training 

parameters is discussed. After training the network for some epochs, PCA is performed on 

the weight covariance matrix. Then searching for the error minimum takes place in the 

reduced space of PCA-determined directions.   

 

 

1.2.10.1.   Directions in the Weight Space 

 

The analysis of directions in a weight space reveals interesting properties of ES that 

can be used to design or improve some neural training algorithms [Kordos 2004b]. Some 

trends and tendencies are common for many datasets and network structures with differences 

only in details. 

 

The cosine of the angle between two vectors A=[a1, a2, ... an] and B=[b1, b2 , ... bn]
T
 can be 

calculated as: 
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The lines for cos W, ||W||, E, cos(W,PC) shown in Fig.1.27-left look very similar for 

various training methods (the sample training was performed on the Iris dataset using  

backpropagation with variable learning rates). It can be seen that the error E decreases 
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proportionally to the changes of weight vector direction cosW. At the final stage of the 

training, the direction remains almost constant and the error is decreasing very slowly, 

although the weights are still growing. The trajectory is then already in the flat part of the ES. 

In some cases, such as weight regularization, the weights do not grow to infinity, but only to 

limited values, nevertheless the error decreases as long as the weight vector changes its 

direction. 

 

 

 

     
 

Fig. 1.27. Left: Change of parameters during network training. Vertical axis: normalized 

||W||, normalized (rescaled to 1) MSE and cosW=cos(W[epoch]-W[last epoch]). Horizontal 

axis: epoch number. Right: Change of parameters during network training. Vertical axis:  

cos(W,PC)=cosine between the weight vector W and the first PCA direction, 

cos(dw,DW)=cos(W[epoch]-W[epoch-1],W[last epoch]), cos(dw,PC)=cos(W[epoch]-

W[epoch-1],PC). Horizontal axis: epoch number. 

 

 

The line cos(W,PC) in Fig.1.27-right shows the cosine of the angle between the first 

PCA direction and a line connecting the starting point with the actual trajectory point. Only 

the weights from the first 100 epochs were included in the weight matrix for PCA calculation. 

The cosine takes the greatest value about the 50
th

 epoch. Afterwards PCA and W directions 

diverge. The divergence is sometimes even stronger than in Fig.1.27-right. For that reason a 

big jump only seldom can be made along PCA directions while training the network. PCA 

directions are very good for ES and even better for trajectory visualization, where a little 

difference in angles does not matter. However using PCA for learning trajectory 

extrapolation, thus making a jump several epochs ahead, is not an easy task, since the proper 

direction of the jump must be determined very precisely. 

 

The two other lines (red and blue) in Fig.1.27-right show the cosine of angles between 

the temporary direction of the trajectory (a vector connecting the last and the actual trajectory 

point) and the first PCA direction cos(dw,PC) and between the temporary direction of the 

trajectory and the direction determined by the starting and the last trajectory point 

cos(dw,DW). These two characteristics differ strongly depending on a training algorithm. The 

values of some other angles are shown in Table 1.2. 
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Table 1.2. Cosine between particular directions in the MLP weight space for the same 

training as in Fig.1.27. 
 

 PCA_c1 (λ1) PCA_c2 (λ2) ||1|| traject  

ICA_c1 -0.99585 0.08037 0.05832 -0.88185  

ICA_c2 -0.96653 -0.15675 0.1038 -0.75964  

||1|| -0.06087 -0.02601 1 -0.04991  

traject 0.86626 -0.25371 -0.04991 1  

PCA_c1 (λ1) 1 0 -0.06087 0.86626  

PCA_c2 (λ2) 0 1 -0.02601 -0.25371  

  
traject – direction of a line connecting the first and last trajectory point  
||1|| – direction of the diagonal vector [1,1,1,...,1]  
 

 

 

 

1.2.10.2.   PCA-based Parameters Reduction. A Case Study 

 

1. Starting from the random weights (error=326) the network (10-4-2) is trained on the 

Wisconsin Breast Cancer dataset for some training cycles using numerical gradient 

(chapter 2.2). The training is stopped with the error=240. 

2. PCA directions are determined.  

3. A minimum in the PCA directions is found (also using numerical gradient) with the 

error=43 and a jump is made to that point (blue arrow in Fig 1.15-left). 

4. No further error decrease in PCA-directions is possible. The network is trained again with 

a standard numerical gradient for 5 training cycles. 

5. Again, PCA directions are determined on the weight matrix from the last 5 training 

cycles.  

6. PCA provides the eigenvectors that determine only the directions, the constant values 

must be added to the weights. The values do not have to be the mean values that were 

subtracted from the weights while calculating the covariance matrix (equation 1.7). We 

would rather like them to be the values of the last trajectory point, since this ensures that 

the training in the reduced weight space can start from the last point of the training in the 

full weight space. However three possibilities of choosing the point (called “fixing 

point”) are considered: 

a) The zero point in the weight space. However this causes that the projection of the ES 

lifts up. The lowest point on it has now the error=244 (Fig.1.28-left) 

b) The point of the mean weight values. The obtained ES looks like an intermediate 

stage between Figs. 2.28-left and 2.28-right. Moreover the point of mean weight 

values is usually not contained in the learning trajectory and much higher error can 

correspond to that point. 

c) The last training point (Fig.1.28-right). This is the only reasonable choice. When the 

point is chosen as a fixing point, the projection of ES does not lift up, but because 

PCA directions are determined on the weight matrix from only a small part of the 

training, we get some local PCA directions. In the local PCA directions the minimum 

is situated very close to the last training point.  

7. Thus, the big jump several training cycles ahead could be made only once. 
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Fig. 1.28. ES of Breast (10-4-2) determined basing on 5 training cycles after the jump. Left: 

fixing point at the zero point in the weight space. Right: fixing point at the last trajectory 

point. 

 

Breast dataset was chosen for the case study intentionally because the dataset is very 

easy to train (what is clear, since its ES is very simple). For most datasets such big jumps in 

PCA directions (from error=240 to 43) are impossible. However, using a PCA-based ES 

projection on which the last training point is situated, it is usually possible to find a point with 

lower error (Fig.1.28-right). The reason for which the method is in most cases impractical is 

the computational cost of calculating PCA every some epochs in order to make only a small 

step in the reduced space. 

 

 

 

1.2.11.   Sections of MLP Error Surface 
 

MLP error surface changes slower in the parts that are located further from its center. 

These parts are reached by the learning trajectory at the final stage of the training. However 

mostly output layer weights contribute to the slower changes. At the beginning of the training 

(close to the ES center) usually the error function derivatives in output layer weight directions 

are bigger, although the distances from the actual point to the error minimum are shorter. 

That is quite opposite to BP assumptions. (There are also versions of BP that use different 

learning rates in different layers.) Therefore RPROP, which takes into account only the sign 

of a derivative, performs not worse than BP. At the final training stage the landscape changes, 

but mainly in output layer weight directions. The differences between error surface sections 

in hidden weight directions at the beginning and at the final stage of the training are not so 

significant. In any case, gradient direction is not the optimal next step direction. 

 

Frequently some features are irrelevant for the classification task. Error surface 

sections in the directions of the weights that connect the irrelevant inputs with hidden neurons 

are almost flat. They may only slightly change due to random noise contained in the features.   
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Fig. 1.29. Left: ES sections in hidden weight directions in the first NG (numerical gradient) 

training cycle. Right: ES sections in output weight directions in the first NG training cycle. 

 

    
Fig. 1.30. ES sections in hidden weight directions in the 15

th
 NG training cycle. Right: ES 

sections in output weight directions in the 15
th

 NG training cycle. 

  

 

The observations can be practically used for training algorithm optimization and they 

have been implemented into numerical gradient algorithm thus achieving significant 

reduction of training times (chapter 2.3.5). 

 

 
 

1.2.12.   Conclusions 
 

Although it is impossible to see n-dimensional spaces in 3 dimensions without any 

distortions, the first and second PCA component coordinate system gives quite a good insight 

into many important ES properties, which are listed below: 

 

 ES of MLP networks has a starfish structure. 

 ES depends on network architecture and training data as well as on transfer and error 

functions. 

 Local minima in craters are very rare in standard MLP networks with monotone 

transfer functions trained on real-world datasets.  

 With MSE error function and sigmoidal transfer functions global minima are in 

infinity in the ravines reaching the lowest error values. 
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 With MSE error function and sigmoidal transfer functions local minima are also in 

infinity but in the ravines reaching higher error values. 

 Ill-conditioning, large flat areas, or choosing a wrong ES ravine due to a poor weight 

initialization may cause many difficulties for training algorithms.  

 

The training method used to generate data for PCA does not significantly influence 

the ES projection shape. The learning trajectories of many algorithms create an arc lying on 

the bottom of one of ES ravines, though the arc may be smoother or rougher. The view of ES 

projection depends on the weights after each epoch. If the training is not successful than the 

learning trajectory does not traverse enough space and both the trajectory and the ES 

projections are too flat and too highly situated.  

 

The shape of ES has the greatest diversity close to its center. Far from the center, the 

surface changes slowly and flat horizontal areas occupy much place. If the random initial 

weight range is too broad then there is a great chance that the starting point lies somewhere 

on the flat area, and as a result the network cannot be trained with any gradient-based or local 

search methods. On contrary, if all initial weights are zero, the network can be successfully 

trained with appropriate methods, such as VSS, because gradients are big in this point. It 

cannot in this case be trained with BP or NG, but this is due to the limitations of the training 

methods and not of the ES properties around the zero point. 
 

In some cases the network training can be accelerated by determining PCA 

components in the weight space after some initial training and then jumping to a minimum 

found in PCA coordinates or by extrapolating the learning trajectory in PCA directions. 

However, a universal solution has not been found so far. Non-linear techniques, such as 

principal curves, principal surfaces or kernel PCA, can also be used to display the surfaces 

and to attempt the reduction of training times. This may be one of the future research subjects 

aimed at a better understanding of neural networks and  improving network architectures and 

training methods.  

 

 

 

1.3.   Visualization and Properties of MLP Learning Trajectories 
 

 

1.3.1. Error Surface and Learning Trajectory 

 

 In the 3-dimensional plots the learning trajectory usually intersects the error surface in 

only one point that will be called a „fixing point” and that corresponds to W0 in the equation 

(1.12). One of the learning trajectory points can be arbitrary selected as the fixing point, 

while placing in the same plot the error surface and the learning trajectory projections. Using 

the equations (1.10) and (1.11) does not always work well because the point given by (1.11) 

is usually not traversed by the learning trajectory.  

 

The convention in this thesis is that the zero point in the weight space is always in the 

middle of the base of the cube (c1=0 and c2=0). In all figures presented so far ES projections 

were fixed to the zero point in the weight space (except Fig. 1.28-right). Although such ES 

projections are very similar to ES projections fixed to a given point of the learning 

trajectories, they do not adhere to the trajectories well. 
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Fig. 1.31. Left: ES and learning trajectory of Ionosphere (34-4-2). Right: vertical axis: 

training error in the point (c1,c2) (red) and corresponding error value on the ES projection 

(blue), horizontal axis: training cycle. Fixing point (red cross) at the starting trajectory point.     

 

 

 The learning trajectory obviously does not lie on the two-dimensional ES projection, 

but somewhere in the multidimensional weight space and therefore it cannot ideally adhere to 

the ES projection. The first and second PCA components comprise typically 95-97% of the 

total variance in the weight (“horizontal”) directions. Nevertheless, the information about the 

error value is not included in PCA calculations. Therefore, it may happen that although the 

“horizontal” distance between the original multidimensional trajectory and its projection into 

the first and second PCA direction is within 5% accuracy, the network error in the two points 

may differ much more. The effect is caused by a high nonlinearity of the error surface. 

 

 

    
 

Fig. 1.32. Left: ES and learning trajectory of Ionosphere (34-4-2). Right: vertical axis: 

training error in the point (c1,c2) (red) and corresponding error value on the ES projection 

(blue), horizontal axis: training cycle. Fixing point (red cross) at the 20
th

 training cycle.  
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   However, such rapid changes in the error surface are relatively rare. In most of 

network trainings the learning trajectory adheres to the ES projection relatively well along 

quite a significant fragment around the fixing point (Fig. 1.32). For small networks and 

simple datasets the good adherence can be obtained for the entire trajectory (Fig. 1.33). The 

vertical coordinate of a given trajectory point corresponds to the factual network error during 

the training, whereas the vertical coordinate of the ES projection point (which has the same 

horizontal coordinates as the given trajectory point) shows the error calculated using only the 

first and second PCA component.  

 

 

 

   
 

Fig. 1.33. Left: error surface and learning trajectory of Xor (2-2-2). Right: vertical axis: 

training error in the point (c1,c2) (red) and corresponding error value on the ES projection 

(blue), horizontal axis: training cycle. Fixing point at the 7
th

 training cycle.   

 

   

Even if the trajectory does not adhere to the ES projection well, it at least shows us 

which ravine was chosen by a training algorithm. The trajectories in n-dimensional weight 

space frequently create arcs. The mean direction of the arc usually corresponds to the 

direction of the ES ravine in PCA projections. The beginning of a trajectory (the training 

cycles before the fixing point) lies often over the ES projection and its end (the training 

cycles after the fixing point) under it. Thus, the ES projections are often flatter then original 

ES on which the trajectories lie. 

 

 

1.3.2.   Learning Trajectory Extrapolation 

 

PCA projections are most reliable and the original proportions are best preserved if 

PCA directions are determined using the weights from all training cycles (Fig. 1.33). If PCA 

is calculated using only weights from a fragment of the training and the entire learning 

trajectory is projected into so obtained PCA directions than the fragment of trajectory 

included in PCA calculations not only tends to be magnified but also has a higher ratio of its 

size in c2 to its size in c1 direction, what is visible as ”bigger teeth” (Fig. 1.36-1.37). 

Moreover, quite irrelevant results are obtained outside that fragment (Fig. 1.34). That is clear 

because the remaining data is projected using not its own PCA directions.    
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Fig. 1.34. Left: error surface and learning trajectory of xor (2-2-2). Right: vertical axis: 

training error in the point (c1,c2) (red) and corresponding error value on the ES projection 

(blue), horizontal axis: training cycle. PCA was calculated on weights from the training 

cycles  0...10. Fixing point at the 7
th

 training cycle.  

 

 

 
FIG. 1.35. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized 

step in the first and second PCA direction. PCA was calculated on weights from the entire 

training (cycles  0...50). The color changes every training cycle. 

 

 

 

 
Fig. 1.36. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized 

step in the first and second PCA direction. PCA was calculated on weights from the training 

cycles  20...55. The color changes every training cycle. 
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Fig. 1.37. Projection of the Iris (4-4-3) learning trajectory trained with NG with an oversized 

step in the first and second PCA direction. PCA was calculated on weights from the training 

cycles  0...5. The color changes every training cycle. 

 

 

1.3.3. Learning Trajectories of Various Training Algorithms 
 

The shape of a learning trajectory depends on all parameters that influence the shape 

of ES and additionally on the training algorithm and its parameters. For example, BP with a 

small learning rate produces very smooth trajectories. Increasing learning rate gives more 

irregular trajectories [Gallagher 2003]. Fragments of the BP trajectories may go as well 

downwards as upwards, while trajectories obtained with some other algorithms (NG, VSS) go 

only downwards.  
 

 

  

   
 

   
 

Fig. 1.38. Projection of the Iris (4-4-3) learning trajectory trained with various algorithms (1-

NG, 2-VSS, 3-LM, 4-SCG, in the first and second PCA direction. The cross shows the zero 

point in the weight space. The color changes every training cycle. 

 

Only the trajectories of batch versions of learning algorithms are shown here. The ES 

is strictly associated with a given set of vectors. In any training, which does not calculate the 

error on the entire set (e.g. online backpropagation), a different ES corresponds to a different 

subset of training vectors. It would be impractical to show such trajectories for two reasons: 

first it is unclear in what coordinate system they should be shown and second the trajectory 
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fragments in online trainings are very small and it would be difficult to see them in the entire 

trajectory scale. 

 

 

 

                          
Fig. 1.39. Left: Projection of the very beginning of the Iris (4-4-3) learning trajectory trained 

with VSS in the first and second PCA direction. Right: Projection of the Iris (4-4-3) learning 

trajectory trained with VSS in the third and forth PCA direction. 
 

 

 

 

 
 

Fig. 1.40.  Projection of the Thyroid (21-4-3) learning trajectory trained with VSS in the first 

(c1), second (c2) and third (c3) PCA direction. Horizontal axes: c1 and c2, vertical axis: c3. 

 

 

In spite the fact that learning trajectories look differently for different training 

algorithms, the first and second PCA directions usually capture together about 95-97% of 

their total variance. Thus, the PCA projections of learning trajectories reflect the properties of 

the original trajectories quite well. The similarity between all trajectories presented in Figs. 

1.38 is obvious; they create similar arcs following the shape of the Iris error surface ravine. 

The differences between them will be discussed in chapter 2.4.4. The easier the training of 
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the dataset is the simpler and more regular is the learning trajectory. The Iris dataset is 

relatively easy for training and its learning trajectories create regular arcs. Higher PCA 

components have significant values only at the beginning of the training, what is clear 

because at that stage training algorithms chose the proper direction. As the training 

approaches the final stage, the direction changes are usually small.  

 

 

 

1.4. Weight Changes during MLP Training 
 

This chapter contains only a short review of the properties of weight changes that are 

common for local MLP training algorithms (analytical gradient-based and search-based). The 

changes of weight values during network training depend on the shape of the error surface as 

well as on the training algorithm. This analysis proved to be a useful factor when designing 

VSS algorithm.  

 

 

 
Fig. 1.41. Typical changes of weight values during MLP training with local methods. 

 

In general, three properties can be noticed. First, on average the change of a given 

weight value in the actual epoch is similar to its change in the previous epoch. Second, the 

final values of different weights can vary ranks of order. Third, after several training epochs 

some weights stop to change. Thus, it seems that the following conclusions can be drawn: the 

previous change of the weight can be used while determining the next change (and some 

algorithms really use it, for example in the form of momentum), the changes of particular 

weights can differ significantly, the weights that are no longer changing can be either frozen 

or pruned.  

 

If we know the typical tendencies, then we can try to use some educated guesses of 

the weight values in the next epoch. Frequently the verification of the guess is quicker than 

calculating the value from scratch. Moreover, there are strong differences between the 

changes of weights in particular layers, however, the differences depend on the training 

algorithm. Detailed discussion of the weight changes for backpropagation, Levenberg-

Marquardt algorithm, numerical gradient and VSS algorithm can be found in chapters 2.3 and 

2.4. 
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1.5.   Neural Activity and Data Spaces 
 

 While calculating the network error values the input signals are given to the first layer 

of the network and then the signals propagate through the network layer by layer. The 

number of signals i(n) propagating simultaneously in parallel through the n-th layer equals to 

the number of this layer outputs, what in turn equals to the dimensionality of this layer 

“signal space” or “data space” or “data representation” or “hypercube”. The first space is the 

input data space (feature space), then there are as many hidden spaces as the number of 

hidden layers (in practice 0, 1 or 2) and finally there is the output (class) space. 

 

 

input (feature)

space

hidden space output (class)

space
 

Fig. 1.42. Data spaces in a three-layer network. 

 

 

The aim of this chapter is to analyze how particular vectors of the training or test set 

are placed in all the data spaces, how their positions change during the training and to draw 

some practical conclusions from this analysis. A single layer of a network can correctly 

divide only data, which can be separated by a single hyperplane (linearly separable data). If 

the network has more layers than each next layer separates with hyperplanes the data space of 

the previous layer. 

 

In classification problems, the training data is divided into labeled subsets 

corresponding to classes. Neural networks try to map each of the training subsets into one of 

the vertices of the hypercube created in the output space. The task of the hidden layers is to 

map the vectors from the feature space in such a way that they could be separated according 

to their classes with the hyperplanes determined by the output layer. The higher layer 

frequently simplifies the internal representation of the lower layer by reducing the 

dimensionality of the data space and by reordering the training vectors (Fig. 1.43). The input 

data can be visualized in the input hypercube, the representation of hidden layers in their 

hypercubes and finally the network output in the output hypercube. If the dimensionality of a 

given hypercube is higher than three, then it is more practical to use parallel coordinates, 

though also other projection methods can be used [Duch 2004a]. 
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Fig. 1.43. Vectors of 3-bit parity (3-3-2) in the hypercubes of feature, hidden and class 

spaces.   

 

  

 

 

      
 

      
 

 

Fig. 1.44. Hidden (left) and output (right) neuron signals for Thyroid (21-3-3). Top: before 

the training starts (random initial weights). Bottom: after the 1
st
 training cycle of VSS. 
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Fig. 1.45. Hidden (left) and output (rights) neuron signals for Thyroid (21-3-3). Top: after the 

4
th

  training cycle of VSS. Bottom: after the 20
th

 training cycle of VSS. 

 

 

 
Fig. 1.46. Hidden neuron signals for Thyroid (21-4-3) after the 10

th
 training cycle of VSS 

shown in parallel coordinates. 
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Neural networks can achieve the same results using various weights. With the same 

distribution of vectors in the feature and class spaces, there exist many vector distributions in 

hidden spaces. The various possible distributions are visible as symmetries in the error 

surface plots. 

 

 Some vectors are far from the decision borders (close to the proper vertices in the 

hypercube). These vectors do not provide useful information in the training process, since 

they give almost zero error.  An easy and effective method to accelerate the network training 

is to gradually eliminate or group together some of the vectors [Duch 2004b] (chapter 2.5.1). 

 

   

 

1.6.   Standard and Balanced Classification Accuracy 
 

The Thyroid dataset (chapter 3.2.13.5) is an example of a dataset with an asymmetric 

class distribution. The training set has 3772 vectors, 93 of class 1, 191 of class 2 and 3488 of 

class 3. The test set has 3428 vectors, 73, 177 and 3178 of class 1,2 and 3 respectively. Thus 

the percentage of vectors in particular classes is 2.47%, 5.06% and 92.47% for the training 

set and 2.13%, 5.16% and 92.71% for the test set. In such a situation it is likely that the cost 

of misclassifying a vector of class 1 as a vector of class 3 will be higher than vice versa 

(chapter 3.2.12.1).  

 

Frequently the network training on datasets with unbalanced classes is more difficult 

because big flat ES areas (situated in the front part of Fig. 1.49-left) corresponding to the 

majority classification accuracy are difficult to leave (see chapter 1.2.5.2).  

 

The standard accuracy is given by 

 

 
total

correct
Astd   (1.24) 

 

where correct is the number of correctly classified vectors and total is the total number of 

vectors in the dataset. 

 

The balanced (weighted) classification accuracy is defined here by 
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where nc is the number of classes, correct(c) is the numbers of correctly classified vectors of 

class c and total(c) is the total number of vectors in class c. 

 

A network training can be optimized for standard or for balanced accuracy by 

adjusting the error function. With a square error function, the standard error is given by 
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and the balanced error is given by 
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where d is the desired signal, s is the observed signal of an output layer neuron c in response 

to vector v and total(c) is the total number of vectors in class c. 

 

A network trained with the error function (1.26) achieves higher standard accuracy 

and with (1.27) - higher balanced accuracy. Also the error surface of both networks looks 

differently, since among other factors, the error surface depends on the error function. In the 

first case the PCA-based ES projection shows asymmetries, which are caused by the unequal 

class distribution. In the second case the error surface projection becomes symmetric because 

the error function (1.27) has an equivalent influence on the error surface as balancing the 

number of instances in each class of the training set.  

 

 

 

       
 

Fig. 1.47.  Projection of  Thyroid (21-4-3) error surface in the first and second PCA direction 

obtained with: left - standard error function (1.26), right - balanced error function (1.27). 
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Fig. 1.48. Output neuron signals for Thyroid (21-4-3) after the 10

th
 training cycle. Left: with 

standard error function, right: with balanced error function (visible better separation of 

classes with fewer vectors). 

 

 

Table. 1.3. Classification accuracies for thyroid dataset with standard and balanced error 

functions achieved after 10 cycles of VSS training. (Longer training allows for much higher 

accuracies  - see chapter 3.2.12.5). 
 

error function Estd Ebal 

Astd(%training) 99.39 99.34 

Abal(%training) 95.30 99.60 

Astd(%test) 98.13 98.02 

Abal(%test) 85.17 92.98 

 

 

 

 

1.7.   Decision Borders 
  

 MLP decision borders are hypersurfaces in the feature space that divide the space into 

subspaces assigned to particular classes. After the network training is finished, the vectors in 

the class space should be situated close to these hypercube vertices, which correspond to their 

classes. Vectors situated on the decision borders in the feature space will be placed on the 

equidistance hypersurfaces (shown in gray in Fig.1.49-right) in the class space.  

 

In the example shown in Fig. 1.49. only two features (petal-width and petal-length) of 

the Iris dataset were used for network training (the network structure was 2-2-3). The test set 

consisted of 961 vectors (31 rows and 31 columns), which evenly covered all the space in 

Fig.1.49-left. That allowed for determining the decision borders, which are shown in 

Fig.1.49-left. The representation of the test vectors in the class space is shown in Fig. 1.49-

right.  
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Fig. 1.49. Left: training vectors and decision borders of Iris (2-2-3) using only two most 

significant features. Right: class subspaces and representation of test vectors in the output 

space. 

 

 

It is an interesting observation that although the test vectors cover evenly the entire 

input space, they do not cover the entire output space, but most of them is attracted to the 

proper vertices and almost all others are located close to the lines connecting the vertices of 

two neighbor classes. The same was observed for the Thyroid dataset (Fig. 1.45, 1.48). The 

classes represented by the red cross and blue square are separated quite clearly. On the other 

hand the border between the vectors shown in green and the vectors shown in blue is not so 

sharp, with higher density of the test vectors in the intermediate region.  

 

Frequently a great disadvantage of neural networks is that as a result of a little 

perturbation of the input values the vector is classified to a different class [Duch 2005]. Most 

of the vectors in the output space are concentrated close to the hypercube vertices and do not 

reflect their probability of particular class membership. Thus, it may be desired to provide 

more smooth transitions between the vertices of the output hypercube. One possible way to 

do it is to use weight regularization or early stopping of the network training (chapter 2.6.2). 

Although such a network may have lower training classification accuracy, it can provide 

more information, its decisions will be more stable and it may generalize better avoiding 

overfitting of the data. Thus, the classification accuracy, frequently used as the only 

measurement of the classifier quality, is not the only value that should be taken into 

consideration (chapter 3.2.12.1). Decision borders will be further considered in chapter 2.6.2. 

 

In the same way, as training the neural network is equivalent to searching for a 

minimum on the error surface, extracting logical rules from data is equivalent to providing 

the description of decision borders (chapter 3.2). 
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Part 2 

 

Search-based Algorithms  

for MLP Training 
 

 

 

 

 

2.1.  Review of MLP Training Algorithms  
 

 

 

2.1.1. Analytical Gradient-based Algorithms 
 

 

2.1.1.1.  Backpropagation 

 

Backpropagation was the first successful training algorithm for multilayer perceptron 

[Werbos 1974][Rumelhart 1986]. Other analytical gradient-based algorithms use the same 

error backpropagation mechanism, but different weight update methods. 

 

The sum-squared error function, which is minimized by backpropagation algorithm, can be 

written in the following way: 
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where desiredj is the desired signal and outj is the actual signal of the j-th output neuron. The 

error is summed over all j output neurons and all v vectors. The network weights are adjusted 

by a series of gradient descent updates. For sigmoid transfer function after some calculations 

that can be found literature, the equations that constitute the basic BP algorithm are obtained 

in the form presented below. We define 
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as the delta for the output layer, where n is the index of the layer. Then we back-propagate 

the deltas to earlier layers using 
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where wkl is the weight connecting the k-th neuron in the n-th layer with the l-th neuron in the 

n+1 layer. Then each weight update equation can be written as 
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To enhance the BP algorithm, variable learning rate and momentum can be used. Since 

similar enhancements can be used with numerical gradient (NG), they will be described in 

detail in the chapters about NG. 

 

 

2.1.1.2. RPROP (Resilient Backpropagation) 

 

RPROP is a modification of standard backpropagation, which considers only the sign 

of the derivative, but not its value [Riedmiller 1992] 
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The learning rate η is adjusted individually for each weight in each training cycle; if the 

direction of error derivative with respect to wij is the same in the actual and in the previous 

epoch then 

 )),1(min()( max  kak ijij
 (2.6) 

 

where a and b are constants, a=1.2, b=0.5. 

If the directions of error derivatives with respect to wij in the present and in the previous 

epochs are opposite then 

 )),1(max()( min  kbk ijij
 (2.7) 

 

If the direction of error derivative with respect to wij was zero either in the actual or in the 

previous epoch then 

 )1()(  kk ijij   (2.8) 

 

Thus, the learning rate increases if the derivative sign in two successive epochs is the same 

and decreases otherwise. RPROP due to omitting the information about gradient value makes 

the learning process much faster in the areas of low error surface steepness. 

 

 

2.1.1.3. Quickprop 

 

The idea of the quickprop algorithm [fahlman88][Osowski 1996][Duch 2000] is to 

approximate the minima on the error surface with a parabola. Using the values of weights and 

gradients in two points (β in equation 2.11) a parabola is determined and a step is made to its 

minimum. 
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Quickprop algorithm uses the following rule of weight changes: 
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The change of the weight depends here on three factors: the error function derivative with 

respect to this weight, the actual value of the weight and the previous change of the weight 

(momentum). The coefficient γ (typically γ ≈ 10
-4

) is responsible for weight reduction and 

prevents the weights from excessive growth. The learning rate η takes one of the two values:   

 

 η=η0    if   0)(
)(

)(




















kw

kw

kE
ij

ij

    or   0)1(  kwij
 (2.10) 

 otherwise  η=0   

 

The momentum term α is adjusted individually for each weight in each epoch: 
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Quickprop is much quicker than standard backpropagation and less prone to spurious 

local minima. Also a simpler version of the algorithm exists, which uses only the parabolic 

approximation to find the error function minimum. 

 

 

2.1.1.4. Scaled Conjugate Gradient 

 

With initial gradient g0 and initial vector p0=-g0 the conjugate gradient method 

recursively constructs two vector sequences: 
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where g is gradient direction and p is called conjugate direction. We proceed from wi along 

the direction pi to the minimum of E at wi+1 through line minimization and then set gi+1 at the 

minimum.  

 

The idea of the conjugate gradient is to spoil the results of the previous step in the 

current step as little as possible by making the current step in the direction orthogonal to the 

previous step. The conjugate direction p minimizes trajectory oscillations and allows longer 

steps, which leads to a faster convergence than steepest descent directions, although the error 

function decreases most rapidly in the steepest descent directions.  
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Scaled conjugate gradient algorithm is a version of conjugate gradient that avoids the 

time-consuming line search along conjugate directions. SCG algorithm [Möller 1993][Haykin 

1994] is considered to be the quickest one among the well-known algorithms for larger 

networks. As a Levenberg-Marquardt algorithm, it introduces a scalar λ to regulate the 

Hessian EH 2 .   
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where E is the real error, Eq is the quadratic approximation of the error, λk is a scaling factor, 

which in each iteration is raised or lowered according to how close E/Eq is to one, i.e. how 

close the error approximation is to the real error. 

 

Since conjugate gradient methods do not compute any matrices, they scale well with 

the network size (chapter 2.4.5). 

 

 

2.1.1.5. Quasi-Newton 

 

Newton’s method is an alternative to the conjugate gradient methods for fast 

optimization. [Dennis 1983] [NN Tolbox 2004]. The gradient descent algorithm uses the 

following update rule: 
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Expanding the gradient of  E(w) using a Taylor series around a point wi,  
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Solving the equation 0)(  iwE  and neglecting the higher order rest, we get Newton’s 

update rule: 
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where )()( 2

ii wEwH   is the Hessian matrix of the performance index at the current values 

of the weights and biases.  
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    (2.15b) 

 

Because it is complex and expensive to compute the Hessian matrix H for feedforward neural 

networks, a version of the algorithm called quasi-Newton (or secant) was developed. It 

updates only the approximate Hessian matrix G entries at each iteration k of the algorithm. 

The most pupular method of calculating the approximate Hessian G is the BFGS (Broyden-

Goldfarb-Fletcher-Shanno) method, which calculates the inverse of the approximate Hessian:  
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where    1 kk GV      10 V       1 kkk WWs         1 kkk EEr            

 

Quasi-Newton algorithm requires more computation in each iteration and more 

storage than the conjugate gradient methods, although it generally converges in fewer 

iterations. The approximate Hessian must be stored, and its dimension is Nw x Nw, where Nw is 

equal to the number of weights and biases in the network. For very large networks it may be 

better to use Rprop or the conjugate gradient algorithm. For smaller networks, however it can 

be an efficient training method. 

 

 

2.1.1.6. Levenberg-Marquardt Algorithm 

 

LM algorithm is considered to be the quickest one from the well-known algorithms 

for smaller networks [Ranganathan 2004][Marquardt 1963][Ranga 2004][Fang 1999]. LM 

algorithm uses both gradient descent and curvature information (Newton’s method). 

Combining these two algorithms, the following update rule can be written: 

 

 )()( 1

1 iii wEIHww  

   (2.16) 

 

where  )(2

iwEH   is the Hessian matrix and )( iwE is the Jacobian matrix. Replacing the 

identity matrix with the Hessian diagonal increases the step in the direction of small gradient 

minimizing the trajectory oscillations. Thus, we get the final Levenberg-Marquardt update 

rule: 
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   (2.17) 
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 is dynamically decreased about a rank of order if the error decreases. If the error increases 

 is increased about a rank of order, learning trajectory returns to the previous point and the 

step is repeated.  

 

The main disadvantage of LM algorithm is a high memory requirement. The size of 

Jacobian is wov NNN and that of Hessian is 2

wN . That in practice terms means that for satellite 

image database with 27 hidden neurons as discussed in [Ranga 2004] the Jacobian alone 

requires 248 MB memory using double (8 Byte) type. To reduce the memory requirements 

the Jacobian may be divided into several parts and Hessian calculated by summing partial 

results but this adds a significant computational overhead. For comparison the VSS algorithm 

(chapter 2.4) requires whov NNNN 2)(  memory for network parameters, what gives only 

1.26 MB memory with double (8 Byte) type. Storing the training set in memory requires 1.30 

MB with double type. (Nw is the number of weights, Nv – number of training vectors, Nh – 

number of hidden neurons, No – number of output neurons.) 

  

 

2.1.1.7.   RLS 

 

The RLS (Recursive Least Square) algorithm relies on the analogy between adaptive 

filters and neural networks [Azimi 1992][Bilski 2002, 2004]. It is well known that in adaptive 

filtering the RLS algorithm is typically an order of magnitude faster than LMS algorithm (on 

which backpropagation is based).  

 

The algorithm minimizes the following performance measure: 
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where λ, called the forgetting factor, is a positive constant less than one, e is the error in the 

linear part of the j-th neuron in the highest (L-th) layer, n is the number of the iteration and 

NL is the number of neurons in the highest layer. The detailed equations describing RLS 

algorithm are rather complex and therefore even though RLS requires fewer training cycles 

than BP the total computational cost of RSL is comparable or only slightly lower than that of 

BP. 
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2.1.2. Global Optimization Algorithms 
 

Global minimization methods applied to neural networks are computationally much 

more costly than gradient-based methods. Nevertheless, they are used because of their ability 

to find frequently much better solutions then analytical gradient-based methods can find 

[Duch 1999a]. 

 

 

 

2.1.2.1. Simulated Annealing 

 

 Simulated Annealing [Kirkpatrick 1983] is inspired by the annealing (cooling) 

process of crystals that reach the lowest energy corresponding to perfect crystal structure, if 

cooled significantly slowly. 

 

An annealing methodology requires three functions [Harold 1997]: the probability 

distribution of parameters 

 

 )/exp()2()( 25.0 TXTXxGT    (2.19) 

 

the probability of accepting the new set of parameters, based on the energy landscape 

property at the new and at the old states 

 

 )]/exp(1/[1 TEPT   (2.20) 

 

and the cooling schedule for changing the temperature T to generate a new state  

 

 )1/(0 TTT   (2.21) 

 

 In an interesting paper by Engel [Engel 1998], simulated annealing was applied to a 

network in which the adaptive parameters were discretized. 

 

 

 

2.1.2.2. Alopex 

 

Alopex uses local correlations between changes in individual weights and changes in 

the global error measure [Unnikrishnan 1994]. The algorithm is stochastic and uses the 

temperature parameter in a manner similar to that in simulated annealing.  

 

The algorithms can be described as follows: consider a neuron i connected to neuron j 

with a weight wij. During the n
th

 iteration, the weight wij is updated according to the rule: 

 

 )()1()( nnwnw ijijij   (2.22) 

 

where δij(n)=- δ with the probability pij(n) and δij(n)= δ with the probability 1-pij(n). The 

probability for the negative step pij(n) is given by the Boltzman distribution: 
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 ))](/)(exp(1/[1)( nTnCnp ijij   (2.23) 

 

where Cij(n) is given by the correlation 

 

 )()()( nEnwnC ijij   (2.24) 

 

and T(n) is positive temperature. )(nwij  and )(nE  are the changes of weight wij and the 

error measure E over the previous two iterations. 

 

 )2()1()(  nwnwnw ijijij
 (2.25) 

 

 )2()1()(  nEnEnE   

 

If )(nE  is negative, the probability of moving each weight in the same direction is greater 

than 0.5. The temperature T is updated every N iterations using the following annealing 

schedule: 
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 if n is a multiple of N and T(n)=T(n1) otherwise (2.26) 

 

In Alopex, the magnitude of w is the same for all weights and that point does not 

seem to be a very good solution since it does not take an advantage of the natural ill-

conditioning of MLP error surfaces. So in empirical tests [Unnikrishnan 1994] Alopex 

required 487 training cycles to solve the Xor problem, while algorithms such as Levenberg-

Marquardt or proposed further in this thesis Variable Step Search Algorithm require less than 

10 training cycles for the Xor problem. On the other hand, the aim of global optimization 

algorithms is not to compete with local algorithms for the speed but for the quality of solution 

for difficult problems. Thus, it seems worthwhile to modify Alopex so that it could use 

different w  for different weights. 

 

 

2.1.2.3. NOVEL Algorithm 

 

Novel is a hybrid, global-local trajectory-based method, exploring the solution space, 

locating promising regions and using local search to locate promising minima [Shang 1996]. 

Trajectory in the global search stage is defined by a differential equation 

 

 ))()(())(()( tPtTtPMtP tg 


  (2.27) 

 

The first component allows the trajectories to be attracted by local minima, and the second 

one allows them to walk out of the minima. The trace function T should assure that all space 

is finally traversed. It may either partition the space into regions or make first coarse and then 

fine search. 
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2.1.2.4.  Genetic Algorithms 

 

Genetic Algorithms (GA) were proposed by Holland [Holland 1992] in the 1970s as 

an algorithmic concept based on a Darwinian-type survival-of-the-fittest strategy with sexual 

reproduction, where stronger individuals in the population have a higher chance of creating 

an offspring [Rutkowska 1997][Jain 1998][Michalewicz 2003].  

 

Every member of a population has a certain fitness value associated with it, which 

represents the degree of correctness of that particular solution or the quality of solution it 

represents. The basic approach is to model the possible solutions to the search problem as 

strings of ones and zeros. The strings are manipulated by the GA using genetic operators, to 

finally arrive at a quality solution to the given problem. Although GA do not guarantee 

convergence to the single best solution to the problem, they are frequently efficient search 

techniques. The main advantage of GA is that they are able to manipulate numerous strings 

simultaneously, where each string represents a different solution to a given problem. Thus, 

the possibility of the GA getting stuck in local minima is greatly reduced because the whole 

space of possible solutions can be simultaneously searched. A basic genetic algorithm 

comprises three genetic operators: 

 

•  selection  

•  crossover 

•  mutation  

 

Starting from an initial random population of strings (representing possible solutions), 

the GA use these operators to calculate successive generations. First, pairs of individuals of 

the current population are selected to mate with each other to form the offspring, which then 

forms the next generation. Selection is based on the survival-of-the-fittest strategy with the 

key idea to select the better individuals of the population. The most commonly used strategy 

to select pairs of individuals is the method of roulette-wheel selection, in which every string 

is assigned a slot in a simulated wheel sized in proportion to the string’s relative fitness. This 

ensures that highly fitted strings have a greater probability to be selected to form the next 

generation through crossover. The mutation operator, which with low probability randomly 

changes single bits in the individuals, is introduced to prevent premature convergence into a 

suboptimal solution. After selection of the pairs of parent strings, the crossover operator is 

applied to each of these pairs. 

 

The crossover operator involves the swapping of genetic material (bit-values) between 

the two parent strings. In a single point crossover, a bit position along the two strings is 

selected at random and the two parent strings exchange their genetic material as illustrated 

below. 

 

Parent A = a1 a2 a3 a4 | a5 a6 Parent B = b1 b2 b3 b4 | b5 b6  (2.28) 

 

The swapping of genetic material between the two parents on either side of the selected 

crossover point, represented by “|”, produces the following offspring:  

 

Offspring A= a1 a2 a3 a4 | b5 b6 Offspring B= b1 b2 b3 b4 | a5 a6   (2.29) 
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Genetic algorithms are very popular as a training method for neural networks 

[Matthews 2000][Seiffert 2001], although not many commercial programs use them and it is 

difficult to find results that show their clear advantage in this type of applications.  

 

In the case of neural network training with GA, the fitness function corresponds to the 

network error (e.g. MSE), and particular weight values are encoded in the genome. However, 

the fitness function can be also a weighted sum of network error and network complexity, 

both encoded in the genome [Kwaśnicka 2004]. The networks can be also trained with 

gradient-based methods and GA can be used only for optimization of network topology - then 

genome encodes only the network structure [Mandischer 1993]. Genetic algorithms can also 

be used as one possible method of SMLP network training (chapter 3.2.10). 

  

 

 

 

 

2.2. Basis of Search Algorithms 
 

Search is a systematic examination of states to find a path from the start state to the 

goal state. The output of a search algorithm is a solution to the problem. The basic search 

algorithms can be divided as follows: 

 

Uninformed (blind) search methods: 

 Depth-First 

 Breadth-First 

Informed (heuristics) search methods: 

 Beam-Search 

 Hill Climbing 

 Best-First 

 

The simplest search methods are uninformed. They have no information about the state 

space and perform blind systematic search. 

 

If knowledge about the problem is available, we can attempt to guide the search to a 

more efficient conclusion. The knowledge we have about the solution cannot be explicit - this 

would mean we could solve the problem directly. Instead, we have rules of thumb – 

heuristics. They are not guaranteed to find a good solution, nor necessarily to find one at all, 

but they will usually help us find an adequate solution more swiftly. 

 

 

 

2.2.1.  Depth-First Search 
 

The depth-first search algorithm searches through the tree systematically, exploring 

each branch until it finds a goal node. One alternative is selected and pursued at each node 

until the goal is reached or a node is reached where further downward motion is impossible. 

When further downward motion is impossible, the search is restarted at the nearest ancestor 

node with unexplored children. This search is complete and non-optimal (the algorithm will 
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not necessarily find the most efficient route through the state space). For a tree with 

branching factor b (average number of children of each node) at depth d, the time efficiency 

is O(bd) and the space efficiency is O(bd). 

 

The Depth-First Algorithm: 

 

1. Form a one element queue Q consisting of the root node  

2. Until Q is empty or the goal has been reached, determine if the first element in Q is 

the goal  

a. If it is, do nothing  

b. If it is not, remove the first element from Q and add the first element’s 

children, if any, to the front of Q  

3. If the goal is reached then success else failure  
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Fig. 2.1. The Depth-First Search. The numbers inside the nodes correspond to the error value. 

The red numbers outside the nodes show the order in which the nodes were examined. 

 

 

 

2.2.2.   Breadth-First Search 
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Fig. 2.2. The Breadth-First Search. The numbers inside the nodes correspond to the error 

value. The red numbers outside the nodes show the order in which the nodes were examined. 

 

 

The breadth-first search algorithm searches for the goal node among all the nodes of a 

particular generation (level) before expanding further. If there is more than one goal node, 

always the nearest one in a given generation is found. This search is complete and non-

optimal. Time efficiency O(bd). Space Efficiency: O(bd). 
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The Breadth-First Algorithm: 
 

1. Form a one element queue Q consisting of the root node  

2. Until Q is empty or the goal has been reached, determine if the first element in Q is 

the goal. If it is, do nothing b. If it is not, remove the first element from Q and add the 

first element's children, if any, to the back of Q  

3. If the goal is reached then success else failure  

  

 

2.2.3.   Hill Climbing Search 
 

Hill climbing search is based on depth-first search. A heuristic is used to improve the 

search efficiency. At each step, it is estimated if one choice is likely to be better than another 

and the choices are ordered accordingly. This search is complete and non-optimal.  

 

The Hill Climbing Algorithm: 

 

1. Form a one element queue Q consisting of the root node  

2. Until Q is empty or the goal has been reached, determine if the first element in Q is 

the goal.  

a. If it is, do nothing  

b. If is not, remove the element from Q, sort the first element's children, if any, 

by estimating remaining distance, and add this sorted list to the front of Q  

3. If the goal is reached then success else failure  
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Fig. 2.3. The Hill Climbing Search. The numbers inside the nodes correspond to the error 

value. The red numbers outside the nodes show the order in which the nodes were examined. 

 

 

 

2.2.4.   Beam Search 
 

Beam search avoids the combinatorial explosion problem of breadth first search by 

expanding only the p most promising nodes at each level. A heuristic is used to predict which 

nodes are likely to be closest to the goal. Beam search expands several partial paths and 

purge the rest. Beam search is like breadth-first search because it progresses level by level but 

it is also like depth-first search, because the beam search moves downward only through the 
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best p nodes at each level; the other nodes are ignored. This search is incomplete and non-

optimal. There is a danger that a goal-finding route will be removed from Q before it can be 

explored. This may lead to not finding any goals at all. At each level there are only p nodes 

stored. This avoids the exponential explosion problem of breadth-first search.  

 

The Beam Search Algorithm: 

 

1. Form a one element queue Q consisting of the root node  

2. Until Q is empty or the goal has been reached, determine if any of the elements in Q 

is the goal.  

a. If they are, do nothing  

b. If they are not, remove the elements from Q and add their children, if any, to 

the back of Q.  

c. Sort Q by heuristic.  

d. Remove all but the first p nodes from Q.  

3. If the goal is reached then success else failure  
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Fig. 2.4. The Beam Search. The numbers inside the nodes correspond to the error value. The 

red numbers outside the nodes show the order in which the nodes were examined and the red 

arrows the paths taken by the beam search. 

 

 

 

2.2.5.  Best-First Search 
 

The Best-First Algorithm:  
 

1. Form a one element queue Q consisting of the root node  

2. Until Q is empty or the goal has been reached, determine if the first element in Q is 

the goal.  

a. If it is, do nothing  

b. If is not, remove the element from Q and add the first element's children to the 

Q.  

c. Sort Q by estimated remaining distance  

3. If the goal is reached then success else failure  

 

The Best-First Search is based on as well breadth- as on depth-first search. A heuristic 

is used to improve the search efficiency. At each step, the expansion of nodes is resumed 

from the most promising node opened so far, no matter where it is in the tree. This search is 
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complete and non-optimal. Since there are different ways to compute the most promising 

(best) node, there are some variants of the best-first search: uniform-cost search (estimated 

best is the least cost so far), greedy search (least estimated cost to goal), A* (cost so far plus 

estimated cost to goal), and many refinements of those.  

 

 

 

2.2.6.  Search Algorithms for MLP Training 

 

There are two significant differences between the weight space in MLP networks and 

nodes of trees or graphs. First, network weights take continuous values. Second, except for 

very simple cases, it is impossible to determine the optimal value of a given weight in a 

single step and the process must be repeated iteratively always in interaction with other 

weights.   

 

For that reason, the described above search algorithms are not very suitable for MLP 

networks and new search-based training algorithms, such as NG, VSS and SMLP training 

methods had to be developed. 

 

If the weights of the network are thought of as tree nodes then the number of nodes is 

limited but each node can be assigned an infinite number of values. Also the points in the 

weight space can be thought of as tree nodes. Then there are an infinite number of nodes and 

each node can be assigned only two values (the learning trajectory passes or does not pass 

through this point). 

 

 The first approach, where a weight represents the node, is closer to SMLP networks 

(chapter 3.2), where the weights can take only three values (-1, 0, +1). SMLP training 

methods, which change one or two weights at a time, resemble the best-first search with 

many significant modifications. Also an SMLP training method based on the beam search is 

proposed. 

 

 The second approach, where a point in the weight space represents the node, is closer 

to the standard MLP networks. Numerical gradient (NG) and variable step search algorithm 

(VSS) use a strategy similar to hill climbing search.  

 

However, it seems that there is no use to apply a modification of the beam search to 

standard MLP networks trained with NG and VSS. We can generate several sets of random 

weights (several starting points) but there are no forks in the road along the trajectory paths 

and all the beams converge to that one with the lowest error after the first training epoch.  

 

Nevertheless, methods based on beam search can be used for MLP training, but not 

with such search methods, as NG or VSS. For example, an algorithm that makes a step in 

random directions instead of always downward can be implemented with beam search. 

 

However, the node analogy does not seem to be the best choice for MLP networks and 

therefore it is no further used in the thesis. Instead, the weights and the points in the weight 

space are considered in MLP training algorithms. 
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2.3.   Numerical Gradient 
 

 

 

2.3.1.    Overview of Numerical Gradient Algorithm 

 

Numerical Gradient (NG) is a local gradient-based search algorithm. In contradiction 

to the training algorithms, which use analytical gradient, it does not require the knowledge of 

connection structure among neurons. Also the neural transfer functions do not have to be 

differentiable. Moreover, special tables that remember neuron signals can be used to reduce 

the computational cost up to several hundred times. In chapter 2.3 only the batch training is 

considered, the discussion of the semi-batch and on-line training can be found in chapter 

2.5.2. The networks discussed here consist of usually three fully connected layers and the 

neurons use sigmoidal transfer functions. In the second part of the thesis it is assumed that the 

slope β of logistic sigmoids used as neural transfer functions equals one, thus the transfer 

function is given by the formula:  
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where Y is the neuron output signal and u is given by (1.1). The networks considered here are 

used for data classification. 
 

As all MLP learning algorithms, NG optimizes weights (including biases as w0 

weights) of output and all hidden layer neurons. Before the training starts, the weights are 

initialized with small random values. If the random initial weight range is too broad then it is 

a great chance that the starting point lies somewhere on the flat area of the error surface and 

as a result the network cannot be trained with any gradient-based or local search methods 

(chapter 1.2).  
 

The initial values of all weights cannot be equal (e.g. all zero), because this would 

provide no difference between the signals of hidden neurons at the starting point. Although 

the gradient components are different from zero, they are the same for the corresponding 

weights of each hidden neuron, what makes the training impossible. This situation resembles 

the vertex of a cone, where the numerically calculated gradient components are different from 

zero, but they are the same in each direction and cancel each other, what finally gives zero 

gradient. 
 

NG algorithm consists of two stages: finding the gradient direction and finding the 

minimal error along this direction. To find the gradient direction, a constant, small value dw 

is added to a single weight w and the error decrease dE(w) is calculated as 
 

 )()()( dwwEwEwdE   (2.31) 

 

E(w) takes the same value for all weights because the gradient component dE(w) is 

calculated in the same point for each weight w.  
  

Such a simple NG algorithm shows better convergence than standard 

backpropagation. NG without directional minimization converges better than BP without 
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directional minimization and NG with directional minimization better than BP with 

directional minimization. (In directional minimization the minimum along the gradient 

direction is searched for and than a step is made to that minimum.) NG in this version 

requires fewer training cycles than BP, but has higher computational effort per one training 

cycle. The total computational effort is comparable or frequently even higher than that of BP 

with optimal parameters. The modifications of NG, which reduce the computational cost and 

improve the algorithm convergence, will be successively introduced in the following 

chapters. 

 

 

 

2.3.2.   Signal Table 
 

Since only one weight is changed at a time, the signals do not have to be propagated 

through the entire network to calculate the error, but only through the fragment of the 

network in which the signals are different before and after the change. The remaining signals 

incoming to all neurons of hidden and output layers are remembered for each training vector 

in an array called “signal table”. With VSS the signals must be propagated through the entire 

network only once at the beginning of the training thus filling in the signal table and with NG 

once per each training cycle. The dimension of the signal table is NV x (NH+NO) where NV is 

the number of vectors in the training set and NH and NO the number of hidden and output 

neurons. After a single weight is changed, only the appropriate entries in signal table are 

updated. Also the error of each output neuron is remembered and does not have to be 

calculated again if a weight of another output neuron is changed. The signal table reduces 

three types of calculations: summing the signals incoming to the neuron, calculating the 

neural transfer function values and calculating the network error. It significantly shortens 

training times, especially for bigger networks. For a network structure 125-8-2 the training is 

accelerated about 35 times, for smaller networks less and for bigger networks more. The 

acceleration is stronger for VSS than for NG. 

 

 

 

 
 

Fig. 2.5. Signals that change if an output neuron weight is changed are shown in red. Signals 

that change if a hidden neuron weight is changed are shown in blue. The remaining signals 

are remembered in the signal table. 
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Table 2.1. Number of particular operations with and without a signal table required to calculate 

numerical gradient direction. Ni, Nh, No – number of input, hidden and output neurons.  
 

type of operation without signal table with signal table 

calculating sigmoid value [No(Nh+1)+Nh(Ni+1)](No+Nh) No(Nh+1)+Nh(Ni+1)(1+No) 

adding incoming signals [Nh(Ni+1)+No(Nh+1)]
2
 2[No(Nh+1)+Nh(Ni+1)(1+No)] 

calculating network error [Nh(Ni+1)+No(Nh+1)]No [Nh(Ni+1)+(Nh+1)]No 

 
Table 2.2. Number of particular operations with and without a signal table required to calculate 

numerical gradient direction for the network structure 125-8-2 (Ni=125, Nh=8, No=2). 
 

type of operation without signal table with signal table 

calculating sigmoid value 10260 (100%) 3043 (29.7%) 

adding incoming signals 1052676 (100%) 6084 (0.0058%) 

calculating network error 2052 (100%) 2034 (99.1%) 

total calculation time 

(experimental measurement) 

100% 2.63% 

 

The values in table 2.1 and 2.2 are given for a single training vector. If the gradient is 

determined on more vectors at once, the values must be multiplied by the number of vectors. 

 

 

 

2.3.3.   Analytically and Numerically Determined Gradient Directions 
 

An interesting comparison can be made between the gradient direction determined 

analytically by BP (the same direction is used by all algorithms that use the backpropagation 

mechanism to calculate gradients) and the gradient direction determined numerically (given 

by the formula 2.31) [Kordos 2004d, 2005]. To obtain a good estimation of the gradient 

direction in a given point, dw must sufficiently small. As the experiments showed any 

dw<0.02 gives practically the same gradient direction. Thus the numerical gradient directions 

for dw=0.02 and dw=0.0002 do not differ noticeably. The plots in Fig. 2.6 are made for the 

normalized length of the gradient vector = 1. That is justified, since only the proportions 

between particular gradient components are meaningful and not their absolute values. 

 

  
Fig. 2.6. Comparison of numerically (NG) and analytically (BP) determined gradient 

components in particular weight directions in the first training cycle. Left: Iris (4-4-3). Right: 

Thyroid (21-4-3). 
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The main difference between numerically and analytically determined gradient 

directions is that backpropagation interprets small gradient components (frequently hidden 

neuron weight components at the beginning of the training) as still smaller and big ones as 

still bigger. The differences between particular numerical and analytical gradient components 

are stronger for bigger networks and more complex datasets (for example the differences are 

stronger for the Thyroid than for Iris dataset, as shown in Fig. 2.6). 

 

There are two reasons to assume that the direction towards minimum is closer to the 

numerical gradient than to the analytical one. First, in NG the gradient is determined directly 

and not assessed by backpropagation or by any other mechanism. Second, BP frequently does 

not converge. The effect is known as falling in spurious local minima. Spurious means that 

the minima are in the backpropagation-estimated gradient direction, but there exists a 

direction in which the trajectory can still go downward. In the experiments the networks were 

trained with BP. When they got stuck in a “local minimum”, then from the same point in the 

weight space the trainings continued with NG in some cases were able to leave the apparent 

minimum and finally converge. 

 

  

    
 

Fig. 2.7. Iris (4-4-3) trained with NG. Left: the first hidden neuron weight changes. Right: the 

first output neuron weight changes. 

 

 

     
 

Fig. 2.8. Iris (4-4-3) trained with BP. Left: the first hidden neuron weight changes. Right: the 

first output neuron weight changes. The training started from the same initial weights as the 

NG training shown in Fig .2.7. 

 

 

Figs. 2.7-2.8 present the results of experiments conducted with the network (4-4-3) 

trained on the Iris data with NG and with BP, starting from the same initial weights. The 

weights values during the training are shown for the first hidden and first output neuron. The 

first difference that can be noticed is that after the network is trained, the hidden weights are 

only slightly smaller than the output ones for NG training, while for BP training they are 
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significantly smaller than output weights. This could be expected, because of different 

gradient component distributions (Fig. 2.6). Thus, it can be concluded that the hidden layer 

weight values are underestimated in backpropagation-based trainings. This problem will be 

further discussed in chapter 2.4.3.  

 

The second difference is that in BP the weights after some cycles grow very slowly, 

almost asymptotically. In NG the weight growth also slows down, but not so dramatically. 

The third difference is that some weights in NG and BP trainings after initially moving in the 

same direction, finally went in opposite directions and both trainings ended in different points 

of the weight space, although the initial starting point was identical.   

 

 

 

2.3.4. Continuous and Discrete Search Space 

 
The discrete NG is an algorithm, which assesses very roughly both the gradient 

direction and the optimal step length along this direction (Fig. 2.9-left). It works well for 

simple datasets, however in more difficult cases the continuous version of NG may be 

required. A comparison between discrete and continuous NG is presented in table 2.3.  
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Fig. 2.9. Discrete and continuous numerical gradient algorithms. Any combination of these 

models is possible. 
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At the beginning of the discrete NG training both dw=0.5 and the precision of finding 

minimum D=0.5. If the error in the next training cycle is greater than 0.999 of the error in the 

previous training cycle, than both dw and D are divided by two (Fig. 2.9-left). The 

approximated gradient component dE(w) can take only 3 values: –1 if the error increases after 

perturbing weight w with dw, 0 if it does not change and +1 if the error decreases. Other 

symbols used in Fig. 2.9: NE is the new error, OE – the (old) error in the previous training 

cycle, t is a threshold (t=0.995÷0.999), reducing the error to AE (acceptable error) terminates 

the training. 

 

Numerical gradient in the discrete search space can be realized using only as few bits 

as four or five to represent all the weights and the value of the transfer function, which also 

can be discretized. Higher precision is required only to store the error value. The algorithm is 

simpler than NG in the continuous space, but it requires more training cycles to converge. 

Moreover, it is frequently unable to converge to such a good solution as the continuous 

version.  

 

Both search spaces continuous and discrete can be realized with sigmoid, staircase 

and many other transfer functions [Duch 1999b]. The thesis concentrates on NG in 

continuous search spaces, and by “NG”, the NG in the continuous search space will be 

understood. 

 

 

Table 2.3. Comparison of discrete and continuous NG - number of training cycles required to 

achieve a given 10-fold crossvalidation accuracy (%test). 
 

dataset 
%  

test 

network 

structure 

discrete NG continuous NG (2.37) 

number of 

training 

cycles 

total 

computational 

effort (scaled 

training time)  

number of 

training 

cycles 

total 

computational 

effort  (scaled 

training time) 

Iris 96 4-4-3 60 668 11 175 

Breast  96 10-4-2 9 195 4 112 

Mushrooms 98 125-4-2 82 3551 21 1070 

 

 

The total computational cost of NG training consists of two terms: the cost of finding 

the gradient direction and the cost of finding the minimum along this direction. The higher 

the precision of finding the minimum along the gradient direction is the fewer training cycles 

are required to train the network, but the cost of finding the minimum grows. 

 

While finding the gradient direction, only one weight is changed at a time and the 

signal table is used, thus the signals are propagated only through small fragments of the 

network. While finding the minimum along gradient direction, all the weights are changed at 

once and the signal table cannot be used, thus the signals must be propagated through the 

entire network. The ratio of the cost of finding the gradient direction cdir to the cost of 

checking the error in one point along this direction cmin depends on the network structure.  

For networks with 50÷1000 weights usually cdir/cmin=15÷30. Detailed explanation of how 

cdir/cmin was calculated can be found in chapter 2.3.2, where the signal table is discussed. 
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There exists an optimal precision of finding the minimum along the gradient direction 

that allows for achieving a minimal cost of the training. As the experiments showed, using 

single or double parabolic approximation (the error is calculated 3 or 6 times) during the line 

search is frequently close to the optimal solution. 

 

 

 

2.3.5.   Gradient Direction and Optimal Next Step Direction  
 

It would not necessarily be optimal to search for the minimum along the gradient 

direction (chapter 1.2.11). The statistically optimal search direction component dS(w) is a 

function of three variables: the network layer, the training cycle Tc and the gradient 

component dE(w):  

 

 ))(),(,()( wdEwlayerTcfwdS   (2.32) 

 

The function f can be considered as a product of two functions fTL=f(Tc,layer(w)) that 

depends on the training phase and on the network layer and fD=f(dE(w)) that depends on the 

gradient component in weight w direction. 

 

 DTL ffwdS )(  (2.33) 

 

The aim of the following reasoning is to determine how to select the functions fTL and 

fD to obtain the best approximation of the search direction dS(w) for a wide range of training 

datasets. 

 

The error surface changes slower in the areas located further from its center. 

However, mostly output layer weights contribute to slower changes (Fig. 1.29-1.30). The 

differences between error surface sections in hidden weights directions at the beginning and 

at the final stage of the training are not so significant.  

 

We are in a given point of the weight space and we want to assess the relation 

between the gradient component dE(w) in the direction of the weight w and the distance mw 

from the actual point to the error minimum in the direction w (Fig. 2.10). Both values dE(w) 

and mw can be obtained from the plots in Figs. 1.29-1.30. Some algorithms (wrongly) assume 

that mw=f(dE(w)) is a linear correlation. However, it is clearly visible that at the beginning of 

the training the values dE(w) are greater in the output layer than in the hidden layer, while 

mw is smaller. Moreover, as the training progresses – the proportions change. 

 

Although the function mw=f(dE(w)) cannot be a priori defined for any particular 

weight, some statistical correlations are quite easy to observe. Thus mw=f(dE(w)) should be 

rather thought of as a statistical distribution than as a function given by an analytical formula. 

As many statistical distributions must be maintained during the training as the number of 

neuron layers with optimized weights: one for each hidden layer and one for the output layer. 

The distributions must be gradually modified as training progresses, since the error surface 

landscape changes.  
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Fig. 2.10. dE(w) is proportional to the error derivative in the actual point with respect to 

weight w. Since dE(w) is not proportional to mw, we search for the value dS(w) that allows 

for a better approximation of mw. 

 

 

 

 

     
Fig. 2.11. Dependence between the gradient component dE(w) and the distance from the 

actual point to the error minimum mw in a given weight direction at the beginning (left) and 

at the end of the training (right) for Iris (4-4-3). 

 

 

In the first approximation we can assume a linear dependence between the optimal 

search direction component dS(w) and the gradient component dE(w) within the same 

training cycle and the same network layer: 

 

 )()())(,()( wdEfwdEwlayerTcfwdS TL   (2.34) 

 

 fTL is the more important factor and using only fTL we can get a better approximation of the 

direction toward the minimum than using only fD.  fTL equals 1 for the output layer and for 

hidden layers it can either equal 1 or decrease gradually from a higher value at the initial 

phase of the training down to 1 at the final stage of the training. 
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Fig. 2.12. Dependence between the gradient component dE(w) and the distance from the 

actual point to the error minimum in a given weight direction mw at the beginning (left) and 

at the end of the training (right) for Iris (4-3-3-3). Red cross = first hidden (counting from 

input), green triangle = second hidden, blue square = output layer. 

 

 

 

         
 

Fig. 2.13. Linear approximation of the dependence between mw and dE(w) for hidden layers;  

1 –  training cycle 1 through 3; 2 – training cycles 4 through 6; 3 –  training cycles 7 through 

11; 4 – training cycles above 11. The red line (4) also approximates the dependence between 

mw and dE(w) for the output layer in any training cycle. Left: the hidden layer in three-layer 

networks and the first hidden layer in four-layer networks. Right: the second hidden layer in 

four-layer networks.  

 

 

 In case of a four-layer network, the dependence between mw and dE(w) for the second 

hidden layer can be approximated with a line situated between the lines approximating the 

dependencies for the first hidden and for the output layer, however at the end of the training 

all the three lines converge to one. 
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Thus, the formula (2.34) can  be written as: 

 

 )())exp(1()( wdETcbawdS   (2.35) 

 

where the typical, experimentally determined, optimal values are: 

 

for 3-layer networks: 

a=0 for the output layer 

a=10÷20 for the hidden layer 

b=0.10÷0.15  

 

for 4-layer networks: 

a=0 for the output layer 

a=3÷5 for the second hidden layer (between the first hidden and the output layer) 

a=10÷20 for the first hidden layer (between the input and the second hidden layer) 

b=0.10÷0.15.  

 

This modification works significantly better, but as experiments showed, too big 

dE(w) do not correspond to mw linearly. Thus, they should be limited to a certain value.  

 

There are several ways to do it. For example, instead of a linear function, a linear 

function with a constant value outside a certain range (a saturated linear function) can be 

used:  

 

 )()( wdEfwdS TL       for -dE0≤dE(w)≤dE0 (2.36) 

 00 )()( dEdEsignfwdS TL       otherwise  

 

where )exp(1 TcbafTL  .  

Another possibility is to use a square root of dE(w)  

 

 |)(|))(()( wdEwdEsignfwdS TL       for -dE1≤dE(w)≤dE1 (2.37) 

 
1))(()( dEwdEsignfwdS TL      otherwise  

 

where )exp(1 TcbafTL  . 

Still another option is to use a non-monotone transfer function, for example: 

 

 ))(exp()())(()( 2

2

2

2 wdEdEwdEwdEsigndEfwdS TL      (2.38) 

 

where )exp(1 TcbafTL  , dE0,dE1,dE2 are proportional to the standard deviation σ of 

gradient components in a given training cycle (dE0=4σ, dE1=8σ, dE2=2σ). 

A series of experiments was conducted to assess which approximation would be the 

best. Instead of using the least square error as an index of the approximation quality, the 

network convergence was observed. The experimental results are presented in Table 2.4. 

 

Though the differences are not big, on average the formula (2.37) gives the best 

performance and it will be used further. This formula was tested with various exponents from 

(0;1), not only with 0.5. However, the exponent 0.5 seems to be the most optimal one. It is 

interesting that the convergence speed for the exponent being zero and being one are very 
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similar. RPROP is an algorithm, which takes into consideration only the sign of the 

derivative, but not its value (exponent=0) and it performs not worse than BP (exponent=1). 

Sin-Chung Ng [Ng 2004] has also recently proposed that the gradient components calculated 

by backpropagation should be taken in power 0.5, however their main reason for that is 

increasing the small gradients to accelerate the training in the flat error surface areas. 

 

 

 

 
 

Fig. 2.14. Iris 4-3-3. Dependence between the search component dS(w) and the distance mw 

from the actual point to the error minimum in a given weight direction at the beginning of the 

training for Iris (4-4-3) calculated with (2.37), which displays the best convergence properties 

of the methods considered here. 

 

 

Table 2.4. Average number of training cycles required to reach a given accuracy on the 

training set with various versions of NG. 
 

dataset Iris Ionosphere Thyroid 

network 4-4-3 43-4-2 21-4-3 

accuracy 92% 98% 90% 96% 94% 97% 

gradient (2.33) 18 30 20 70 - - 

Tc optimized (2.34) 12 18 12 64 32 - 

linear + limit (2.36) 9.3 14 12 42 28 52 

sqrt + limit (2.37) 8.0 11 12 42 18 40 
a·dE·dE·exp(-a·dE) (2.38) 9.5 14 20 44 - - 
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2.3.6. Error Surface Curvature and Second Derivative 
 

The second order analytical gradient based MLP training algorithms, such as 

Levenberg-Marquardt (LM) use not only the information contained in the first but also in the 

second derivative (error surface curvature). They assume that the optimal search component 

in the direction w is approximately proportional to the ratio of the first to the second 

derivative. This assumption seems to be right, because LM algorithm displays much better 

convergence properties than first order methods, but on the other hand its memory 

requirements and calculation times grow rapidly with the network and dataset size, which 

causes that in practice LM can be used only for small networks and small datasets (chapter 

2.1.1.6). However, the second order methods are not very stable. LM sometimes finds a very 

good solution but frequently does not converge at all. 

 

 

 

   
 

Fig. 2.15. Left: Dependence between the search component dS(w) and the distance from 

actual point to the error minimum in a given weight direction mw at the beginning of the 

training for iris (4-4-3) trained with: left – LM, right – NG using equation (2.40).  

 

 

The equation (2.37) aims at achieving a better convergence than the first order 

methods, while being still suitable for large networks and large datasets. Nevertheless, it 

would be interesting to see the correlation between the ratio of the numerical gradient 

component to the curvature of the error surface section in a single weight direction and the 

distance to the error minimum in that direction. To achieve this, the numerical second 

derivative d
2
w is calculated as the curvature measure, only in single weight directions. We 

already know the error E(w) in the actual point and the error in the point E(w+dw). In order 

to assess the curvature, we must calculate the error in one additional point, for example in 

(w+0.5dw):  

 

   )5.0()()(5.0)(2 dwwEdwwEwEwEd   (2.39) 

 

Thus calculating the second derivative requires twice as much calculation as 

calculating only the first derivative. Therefore, this approach may be justified only if it allows 
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for reducing the number of training cycles at least twice in comparison to the number 

achieved with (2.37). 

 

 
|)(|

)()(
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22 wEd
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
  (2.40) 

 

d
2
E(w)<0 means that the error surface in weight w direction is concave. It is fortunately 

concave in the prevailing number of points covered by the training trajectory. That is 

obvious, because the trajectory tends to occupy rather the error surface ravines than ridges. 

The absolute value of d
2
E(w) is taken in (2.40), because the sign of dS(w) is determined only 

by the direction of error decrease and not by the error surface being concave or convex. 

 

Although using the second order information gives on average a slightly better 

linearity of the correlation between mw and dS(w), it allows to train the network on average 

in the same number of training cycles as the search direction given by (2.37), as shown in 

Table 2.5. Moreover, sometimes problems with convergence may occur and the amount of 

calculations is doubled. Thus, it is not suggested to use this method. 

  

The most efficient solution would be probably when we get a linear dependence 

dS(w)=f(mw), except for the cases when a minimum in a given direction lies in infinity or 

very far - then the move in this direction must be limited. In this aim, the minimum in each 

weight direction must be searched for separately. Searching for the minimum in each weight 

direction separately will be computationally costly and as it is known from the experiments, 

the results expressed by the number of training cycles improve only a little. However, after 

some modifications this idea can work exceptionally well (chapter 2.4). 

 

 

 

2.3.7.  Numerical Gradient with Momentum 
 

The idea of momentum is to accelerate the training convergence by using the 

information about the weight changes in the previous training cycle while determining the 

changes in the actual training cycle. Usefulness of this approach can be explained in two 

ways: either using the information about single weight changes or using the information 

about MLP error surface and learning trajectory shapes. 

 

The average changes of a given weight in two successive training cycles are usually 

similar. Therefore, it seems reasonable to force greater changes in the same direction in order 

to minimize the required number of training cycles. However, forcing the algorithm to go 

beyond the minimum in the gradient direction does not work very well. After making such an 

oversized step we reach a point on the opposite slope of the error surface ravine. The gradient 

direction in that point strongly differs from the gradient direction close to the bottom of the 

ravine. Consequently, the trajectory will oscillate from one side of the ravine to the other. 

Thus, when the step size increases beyond the minimum in a given direction, also the 

direction must be corrected. This leads to a conclusion that error surface ravines create arcs. 

If the same distance along the arc must be covered in fewer steps, then it is obvious that the 

angle between the directions of the successive steps must be smaller. That can be obtained by 

using a weighted sum of the previous step and the line from the current position to the 

minimum in the gradient direction. This method known as momentum can be realized with 
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NG in a similar way as it is realized with BP. The following formula expresses the change of 

weight w, using NG with momentum: 

 

 dw(Tc) =mometum·d(wTc-1)+d(wTc)     (2.41) 

 

where d(w) is the distance that would be covered in the weight w direction if the trajectory  

moved in the gradient direction. With momentum the weights grow quicker, especially at the 

beginning of the training. 

 

 

  
 

Fig. 2.16. Iris (4-4-3) trained with NG without momentum. Left: MSE (red) and classification 

accuracy (blue) on the training set. Right: values of the first hidden neuron weights. 

 

 

    
  

Fig. 2.17. Iris (4-4-3) trained with NG with momentum. Left: MSE (red) and classification 

accuracy (blue) on the training set. Right: values of the first hidden neuron weights. 

 

 

Also another interesting effect caused by momentum can be observed with some 

datasets: many weights do not grow slowly to infinity or to very big values, but stabilize at 

constant values after some training cycles (Fig 2.17). The stabilization occurs already in the 

area of network convergence. A network trained with NG without momentum requires much 

more training cycles to reach such big weights values. Moreover, momentum decreases the 

oscillations of classification accuracy on the training set at the beginning of the training. 
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Momentum can be also used to minimize trajectory oscillations. The oscillations can 

appear if we use the discrete version of NG, where the minimum along the gradient direction 

is not localized, but a constant step is used. With continuous NG, the oscillations are limited 

to the accuracy of finding the minimum along the gradient direction and are too small to have 

practical influence on the training process. Thus, there is no need to reduce them by 

averaging the directions from several iterations.  

 

Momentum works very well for the Iris dataset but it does not work equally well for 

every dataset. The optimal momentum value must be chosen individually for each dataset. 

Usually higher momentum values are possible for smaller networks. Moreover, while used 

with NG, it must be sometimes switched off at the final stage of the training, since after 

accelerating the initial stage of the training, the momentum term can prevent the network 

from the final convergence (the weight stabilization can occur too early). 

 

Other possibilities of decreasing training times include weight pruning and freezing 

(see chapter 2.4.3), using border vectors (chapter  2.5.1) and updating the weights after only a 

part of the training set is propagated through the network (chapter 2.5.2). 

 

 

 

2.3.8.  Experimental Comparison of various NG Methods  
 

 

Table 2.5. Average number of training cycles required to obtain a given accuracy on the 

training set with various versions of NG. The optimal momentum was determined 

experimentally for each dataset. 
 

dataset Iris Ionosphere Sonar 

network 4-3-3 34-4-2 60-8-2 

accuracy 90% 96% 90% 96% 90% 99% 

gradient (2.31) 18 30 20 56 12 32 

optimized (2.37) 7.9 11 12 32 10 30 

second derivative (2.40) 8.1 11 12 - 17 45 

momentum (2.41) 8.0 11 12 24 14 60 

optimized+momentum 7.1 10 8.2 16 12 45 
step to a minimum  

in each weight direction 
5.1 8.6 5.4 13 6.8 25 

 

 

Figs. 2.18-2.21 are presented as comments to Table 2.5.  
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Fig. 2.18. Standard NG (2.13) for iris 4-3-3. Left-top: error surface sections in the search 

directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25. Right-top: 

PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error, acc - 

accuracy, |W| - length of weight vector, on horizontal axis: training cycle (the vertical axis is 

in relative values that can be compared among pictures 2.14-2.17). Left-bottom: Dependence 

between search components dS(w) and the distance mw from actual point to the minimum in 

weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the 25
th

 training 

cycle.  



 86 

     
 

 
 

         
  

Fig. 2.19. NG with optimized direction (2.37) for iris 4-3-3. Left-top: error surface sections in 

the search directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25. 

Right-top: PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error, 

acc - accuracy, |W| - length of weight vector, on horizontal axis: training cycle. Left-bottom: 

Dependence between search components dS(w) and the distance mw from actual point to the 

minimum in weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the 

25
th

 training cycle. 
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Fig. 2.20. NG with momentum = 0.25 (2.42) for iris 4-3-3. Left-top: error surface sections in 

the search directions dS at the starting point and in training cycles: 5, 10, 15, 20 and 25. 

Right-top: PCA-based learning trajectory projection. Middle: on vertical axis: E - MSE error, 

acc - accuracy, |W| - length of weight vector, on horizontal axis: training cycle. Left-bottom: 

Dependence between search components dS(w) and the distance mw from actual point to the 

minimum in weight w direction in the first training cycle. Right-bottom: dS(w) and mw in the 

25
th

 training cycle. Momentum does not work so well on every dataset..  
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Fig. 2.21. NG with optimized direction and momentum (2.43) for iris 4-3-3.Left-top: error 

surface sections in the search directions dS at the starting point and in training cycles: 5, 10, 

15, 20 and 25. Right-top: PCA-based learning trajectory projection. Middle: on vertical axis: 

E - MSE error, acc - accuracy, |W| - length of weight vector, on horizontal axis: training 

cycle. Left-bottom: Dependence between search components dS(w) and the distance mw from 

actual point to the minimum in weight w direction in the first training cycle. Right-bottom: 

dS(w) and mw in the 25
th

 training cycle. 
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2.3.9.    Conclusions 
 

The numerically and analytically determined gradient directions in MLP weight 

space differ. Though the difference is usually not great, its cumulative effect during the 

training can cause that the algorithms based on numerical and analytical gradients will find 

quite different solutions while starting from the same initial weights. A significant difference 

exists between any of the gradient directions and the optimal next step direction. The 

common tendency of many training algorithms based on analytical gradient is to 

underestimate the modifications of the hidden layer weights (Fig. 2.7, 2.8 and 2.28). 

 

The discrete NG is the simplest version of the numerical gradient algorithm. It has 

lower computational cost per one training cycle, however it requires more training cycles and 

its total computational effort is higher than that of continuous NG. There exists an optimal 

precision of finding the minimum along the gradient direction or along the modified search 

direction, which allows for the lowest training costs.  

 

The optimized direction dS allows for longer steps and thus the training can be done 

in fewer steps. Since this does not impose any additional overhead, it is advocated to use the 

optimized direction dS. Except for the optimized direction dS, each other enhancement 

increases the training speed by reducing the amount of information calculated by NG 

algorithm (including semi-batch or on-line training or using border vectors – see chapter 

2.5.1–2.5.2). The information cannot be reduced too much, since then the training will not be 

able to converge. For that reason if some of the methods are combined together, each of them 

should modify the basic training algorithm less than if used separately (for example the 

optimal momentum can be 0.4 with the batch training and 0.2 with the semi-batch training).  
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2.4. Variable Step Search Algorithm 
 

 

 

2.4.1. In-Place versus Progressive Search 
 

 In the in-place search used by NG, all the weight changes are examined in the same 

point on the error surface and then a single step is made in the calculated direction. In the 

progressive search, after each weight change is examined, immediately a step in this weight 

direction is made and the next weight changes are examined already in the new point on the 

error surface. 

 

As the experimental results showed  (chapter 2.3.8), the best method of searching for 

the next step direction is to find a minimum in each weight direction separately (using any 

line search method) and then to move to that point.  

 

However, if the minimum in the weight w1 direction is found, we can immediately 

move to that minimum and then search for the minimum in the weight w2 direction being 

already in the new point. Then we move to the minimum found in the weight w2 direction and 

so on. Always a step in a given weight direction is made immediately after the minimum in 

that direction is found, while all remaining weights are not changed. Thus, there are as many 

steps in orthogonal directions during one training cycle as the number of weights. Many 

experiments aiming at determining the optimal weight change sequence were performed, 

however the various sequences did not have significant influence on the training efficiency. It 

cannot be concluded that any sequence produces the same results because it is also possible 

that the optimal sequence has not been found so far. Therefore the weights are changed one 

be one, first all weights from the hidden layer than all weights from the output layer, or first 

all weights from the output layer and then from the hidden layer. Only after detecting that 

changing a given weight does not change the error, the weight is frozen or pruned  (chapter 

2.4.3). 

 

The computational cost per training cycle is the same as for the NG in-place search, 

but as experiments showed, several times fewer training cycles are required to train the 

network. Moreover, the progressive search method is usually able to find better solutions than 

the in-place search. Frequently the quality of the solution is the most important factor and the 

training time is less important or not important at all, especially for small datasets.  

 

The progressive search as an MLP training algorithm is more stable and allows for 

training the network in a fewer training cycles than any other method considered so far. 

However, several modifications are still required to decrease the computational cost of the 

solution.  

 

There are at least three methods of minimizing the cost. The first method is 

remembering neuron signals in the signal table instead of calculating them every time 

(chapter 2.3.2). Signal tables can reduce the cost up to hundreds times. The second method is 

to use appropriate search heuristics while determining the weight values (chapter 2.4.2). The 

cost reduction due to the heuristics is difficult to assess precisely, because it depends on many 

factors. After applying these two methods, this algorithm performed exceptionally well and 

the name variable step search algorithm (VSS) was proposed for it [Kordos 2004b]. 
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The third method is to use staircase transfer functions instead of sigmoids, which can 

be used since no gradient and no derivatives are calculated by VSS. The values of the 

staircase functions can be read from arrays instead of being calculated each time. The time of 

calculating the neuron signals is a rank of order shorter, but the total training times are 

usually reduced by half. Without the signal table the reduction would be only single percents, 

because signal table reduces several rank of orders the addition and multiplication operations 

(see Table 2.1 and 2.2) and at most several times the number of calculating sigmoid function 

value. Thus with the signal table, calculating the sigmoid function values takes over half of 

VSS training time, while without signal table most of the time is spending by calculating the 

total neuron input (u in equation 1.1). 

 

 

 

2.4.2. Determining Weight Values 
 

The simplest search-based algorithm works in the following way: in one training 

cycle the value of dw is added to or subtracted from a single weight w. If the error decreases 

then the change is kept, otherwise it is rejected. Then dw is added to or subtracted from the 

next weight and again the error is calculated, until the changes of all weights are examined. 

dw can be gradually decreased each training cycle. This algorithm used for logical rule 

extraction from MLP networks with not fully connected layers will be presented in chapter 

3.2.  

  

VSS is the modified version of the simplest search-based algorithm, in which dw is 

not constant, but dynamically adjusted independently for each weight during a rough 

minimization in each weight direction. VSS was designed taking the advantage of MLP error 

surface properties that its steepness in different directions varies ranks of orders, and the 

ravines in which the MLP learning trajectories lay are usually curves, slowly changing their 

directions [Kordos 2004a, 2004c][Gallagher 2000, 2003]. Basing on the properties we can 

expect that an optimal dw for the same weight in two successive training cycles will not differ 

much while dw for different weights in the same training cycle may differ ranks of order.  

 

In each training cycle i the first guess of dw(w,i) for a given weight w might be the 

value dw(w,i1) that the weight changed about in the previous training cycle. However the 

detailed experimental analysis of the algorithm behavior leads to the conclusion that for most 

cases the least number of calculations is obtained when the first guess is dw(w,i)= 

c1·dw(w,i1), with c1 in the range 0.3÷0.4, in spite that statistically the ratio of 

dw(w,i)/dw(w,i1) is close to 1.  

 

Fig. 2.22. shows a diagram for determining dw of a single weight in one training 

cycle. Before the training starts, the weights are initialized with random values from the 

interval (1;+1). Initializing all hidden layer weights with zero values and setting the first 

guess d0 of each weight change to a large value is an effective method of feature reduction in 

the first training cycle. The larger d0 (0.5, 1, 2) is the more features are eliminated from 

further training. After the first training cycle all hidden weights that still equal zero are 

pruned and d0 is again set to a smaller value. 

 

In the first training cycle d=d0=0.2÷0.3. Since dw(w,0)=0, for each weight w in the 

first training cycle the first guess is dw(w,1)=d0. The ravine on the error surface is narrow 

close to the algorithm starting point. Thus setting d0>0.5 frequently causes that the trajectory 
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cannot well fit into the ravine bottom and some weights oscillate while others do not change 

at all during some initial training cycles, resulting in a slow training or convergence 

problems. 
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Fig. 2.22. Determining a single weight value in one training cycle of the Variable Step Search 

Algorithm. Typical values of constants c1, c2, c3, d1 are given in Table 2.6.  

 

 

Comments to the VSS algorithm diagram (Fig. 2.22): 

 

  1: if dw(w,i)=0 then goto 3. 

2: the value c1·dw(w,i-1) is added to the weight w.  
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3: if the weight w did not change in the previous training cycle try to add (or subtract) 

to it a smaller value d=d1·sign(w). Each weight is more likely to change in the 

same direction in the next training cycle. For that reason d1 is multiplied by sign(w) 

to minimize the number of operations. If the situation repeats twice or more than 

the weight can be optionally frozen. 

4: If the new error NE after the change is smaller than the old error OE before the 

change then the direction of the change is correct, goto 7. 

5: otherwise change the direction of search d=-d. 

6: If the new error NE after the change is not smaller than the old error OE before the 

change then do not change the weight. 

7: Search for an approximate minimum along this direction; set d=c2·d  

8: If n<max_n and |w|<max_w and |d|<max_d then goto 9 else goto 11. max_n is 

given to prevent the loop through points 7-9 from being executed too many times. 

Maximal acceptable values for a single weight max_w and for a single weight 

change max_d provide an optional way of weight regularization and can be set to 

infinity if weight regularization is not required or already provided by a standard 

penalty term added to the error function. 

9: If the new error NE after the change is smaller the than old error OE before the 

change then goto 7 else goto 10. 

10: If c3·(VE-OE)>NE-OE then accept that point in spite that the error in the previous 

point was a bit lower else return to the previous point (goto 11). VE is the last error 

before OE, i.e. NE=error(n), OE=error(n-1), VE=error(n-2). It works like a 

momentum with standard backpropagation and is likely to bring gain in the next 

training cycle. 

11: d=d/c2. Return to the previous point.  

       

 
 

Table 2.6. VSS parameters with sigmoid slope=1. The sensitivity column contains the range 

of a parameter within which the VSS effectiveness is at least 90% of that for the optimal 

parameter. The values are only approximate and do not include interactions between 

parameters. 
 

parameter 
optimal 

value 

sensitivity 

(10% range) 

explained  

in point No. 

d0 0.2 0.10÷0.30 
above 

Fig.2.18. 

d1 0.03 0.01÷0.10 3 

c1 0.33 0.22÷0.44 2 

c2 2.0 1.5÷3.3 7 

max_n 4 3÷8 8 

c3 0.3 0.1÷0.5 10 

 

 

 

Many experiments with various weight updates strategies were made. On average the 

error is calculated about 3 times while determining a single weight value in one training 

cycle. It is possible to reduce this number but this leads to a higher number of training cycles. 

It is likely that a more efficient weight update scheme exists, however it has not been found 

so far. 
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2.4.3. Analysis of Weight Changes 
 

The VSS algorithm is very convenient for visualization purposes since it changes only 

one weight at a time, which allows us to assess the influence of single weights on the 

convergence process.  

 

The plots presenting error value as a function of epoch number are widely used in 

literature. From Fig. 2.23 it can be seen that the weight changes (absolute values) in the first 

training cycle are either zero or the initial change d0. As the training progresses some weights 

change slower and some faster. After several training cycles it is clearly visible which 

weights do not change any more or their little changes do not significantly influence the error 

value and these weights can be frozen or pruned.  

 

 

 

 
 

Fig. 2.23. Thyroid (21-4-3) trained with VSS: MSE (red) and classification accuracy (blue) 

on training set, length of weight vector W (black), absolute value of single weight change 

|dw| (yellow), MSE decrease due to a given change dE (green). All values are rescaled to fit 

the plot. (see chapter 3.2.12.5 for the Thyroid dataset description)  
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Fig. 2.24. Mean values (M) and standard deviation (S) of hidden (H) and output (O) weight 

changes during the Thyroid dataset (21-4-3) training with VSS.  

 

 

             

 
 

Fig. 2.25. Selected output layer weights. Thyroid (21-4-3), training with VSS. 

 

 

 
 

Fig. 2.26. Selected hidden layer weights (among the 8 input features only 2 are meaningful)  

Thyroid (21-4-3), training with VSS. 
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Fig. 2.27. Selected hidden weights of irrelevant features. Mushrooms (125-8-2), training with 

VSS. (see chapter 3.2.9.2 for the Mushrooms dataset description) 

 

 

In many datasets, especially in those with large number of features, only some 

features are useful for classification purposes. The weights connecting hidden layer neurons 

with the irrelevant features do not change during the training with NG or VSS. Thus, it is 

very easy to detect the irrelevant features and to remove them from the further training by 

pruning their weights after the first or second training cycle. Mushrooms and Thyroid are 

examples of datasets with plenty of irrelevant features (Fig. 2.26, 2.27). 

 

 Observation of the weight changes shows that after several training cycles many 

weights do not change significantly any more and the further training concentrates on 

adjusting only the values of a few weights (Fig. 2.23). Since some of the weights changed at 

the beginning of the training, it cannot be assumed that they are irrelevant, but rather that they 

have already reached their optimal values and these weights can be frozen and not modified 

any more. A threshold for the minimal weight change must be determined or set a priori. If 

the weight change in a given training cycle is below the threshold, the weight is frozen for 2
n
 

training cycles, where n starts from one and is incremented each time the weight value is 

determined without being changed. If the change is above the threshold, the weight is 

normally taken into account in the next training cycle.  

 

 These methods of weights pruning and freezing, which can be used as well with VSS 

as with NG, aim at accelerating the training, however they also improve network 

generalization by removing the connections that transport only residual noise. 

 

 The training algorithms based on analytical gradient frequently underestimate the 

gradient components in the hidden weight directions (chapter 2.3.3). As a result even the 

hidden weights of a network trained with LM, which assesses the optimal direction much 

better than BP, grow much slower than when trained with VSS (Fig. 2.28). Thus VSS reaches 

the optimal hidden weight values much quicker and after some training cycles no further 

changes are required (after 4 training cycles in Fig. 2.28-right) That is one of the main 

reasons why VSS requires fewer training cycles than LM. The output layer weights also grow 

quicker in VSS trainings, but here the differences between LM and VSS are much smaller. In 

both algorithms the output layer weights grow faster than hidden layer weights in LM, but 

slower than the hidden layer weights in VSS. 
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Fig. 2.28. Hidden layer weights for Iris (4-4-3). Left: trained with LM. Right: trained with 

VSS. 
 

 

 

2.4.4.  Learning Trajectories 
 

The first and second PCA directions usually capture together about 95-97% of total 

variance contained in the learning trajectory. Thus, the PCA-based projections of learning 

trajectories reflect the properties of the original trajectories quite well (Figs. 2.29-2.33).  
 

 

 

 
Fig. 2.29. PCA-based projection of Iris (4-4-3) error surface trained with VSS with visible 

learning trajectory. The trajectory color changes every training cycle.  

 

 

The trajectories show some regularity for every datasets. Not only dw for the same 

weight in two successive training cycles does not differ much, while dw for different weights 

in the same training cycle may differ ranks of order, but also some trends in weight changes 

may be observed. All sample plots in this chapter use the same network with 4 inputs, 4 

hidden and 3 output neurons trained on the Iris dataset. 
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Fig. 2.30. Projection of Iris (4-4-3) learning trajectory trained with VSS in the first and 

second PCA direction. The cross shows the zero point in the weight space. The trajectory 

color changes every training cycle. 
 

 

 

 

 
Fig. 2.31. Projection of the Iris (4-4-3) learning trajectory trained with NG without 

momentum in the first and second PCA direction. 

 

 

 

Fig. 2.32.  Projection the Iris (4-4-3) learning trajectory trained with LM in the first and 

second PCA direction. 
 

 
Fig. 2.33.  Projection of the Iris (4-4-3) learning trajectory trained with SCG in the first and 

second PCA direction. The training cycles are divided with short crosswise lines.  
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Fig. 2.34. Projection of the Iris (4-4-3) learning trajectory trained with VSS in the third and 

fourth PCA direction.  

 

 

Higher PCA components have significant values only at the beginning of the training, 

what is clear, because at that stage training algorithms chose the proper direction. As the 

training approaches the final stage, the direction changes are usually slow.  

 

The similarity between all trajectories presented in Figs. 2.30-2.33 is obvious; they 

create similar arcs following the shape of the Iris error surface ravine. The differences are 

also clearly visible. Using gradient-based information makes the training dependent on a 

factor that vanishes as the training progresses, so gradient-based algorithms have a tendency 

to decrease their learning steps as gradient decreases and thus slowing down the training even 

more.  

 

 VSS does not decrease the step when the gradient decreases, because VSS does not 

rely on gradient information, but rather on the learning history contained in the trajectory. In 

general, VSS also sometimes decreases the step, but that is a result of a tighter curvature of 

the ravine, not of a smaller gradient. VSS stops when the gradient reaches zero values.  

 

 

 

 

2.4.5. Experimental Comparison of VSS, NG, LM and SCG  
 

The numerical experiments were made on some well-known benchmark dataset from 

the UCI learning repository. The datasets and their detailed description can be found in 

[Mertz 1998]. Most of the datasets are also described in chapter 3.2.12. For each training 

algorithm 20 experiments were made with every dataset. The network was tested on test sets 

(Thyroid, Shuttle) or in 10-fold crossvalidation (Iris, Wisconsin Breast Cancer, Mushrooms). 

A vector was considered to be classified correctly if its corresponding output neuron signal 

was higher then other neuron signals and than 0.5. All training algorithms were run with their 

default parameters, the same for each dataset. Only sigmoid transfer functions were used, so 

the additional acceleration of VSS that can be obtained with staircase transfer functions is not 

revealed here.  
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Four values determining the algorithm efficiency are considered: the total 

computational complexity (Ct) required to achieve the desired effect, memory requirements 

(MB), the quality of the solution the algorithm can find (% accuracy on the test) and the 

percentage of the algorithm runs that converge to the solution (CR) of this quality. 

 

VSS and NG calculations were done using my own program written in Delphi 

[Delphi]. Matlab Neural Network Toolbox [NN Toolbox 2004] was used for LM and SCG 

calculations. For bigger datasets (such as Shuttle) the time of propagating once the training 

set through the network in NN Toolbox and in my program did not differ more than 5%. For 

smaller datasets (such as Iris) the times were much shorter in my program. In general, it 

would not be the best idea to compare the times between Matlab and my program directly. 

Therefore, the computational complexity of the algorithms was assessed in the following 

way: first only the datasets were repeatedly propagated through the network with calculating 

the MSE error Ns times (in the case of Matlab it was done by modifying trainscg.m so that 

only sim() function was called within the plot). Then the algorithms were run the average 

number of training cycles require to converge Nt for Mushrooms, Thyroid and Shuttle and the 

training time Tt was measured. The real training times for Iris and Breast were too short for 

reliable direct measurement, thus for SCG, NG and VSS training to measure the training 

times, the sets were increased by including each vector 100 times. For LM there was no way 

to measure the training times for such small datasets. Because LM training times depend 

nonlinearly on the number of training vectors – this method could not be used. All on-screen 

display and additional options were switched off in both programs (though for bigger datasets 

it had negligible influence). A given algorithm computational complexity was calculated for 

given dataset and network structure per one training cycle as: Ce=(Tt/Nt)/(St/Ns). 

 

For VSS Ce was usually between 24 for the smaller networks and 36 for the bigger 

networks. For LM Ce was unmeasurable for smaller networks (probably it was below 10)   

and grew rapidly with network size to 85 for the Shuttle dataset. For SCG Ce did not depend 

much on the network size, but rather on the network structure and dataset complexity, and  

was between 2 and 6. The number of the training cycles Nt  required to converge was usually 

the lowest for VSS and the highest for SCG. 

 

The total computational complexity Ct shown in Table 2.7 reflects the algorithm 

speed. It expresses the ratio of the total training time to the time of propagating the dataset 

through the network once. Ct can be obtained by multiplying the per training cycle 

complexity Ce by the average number of training cycles Nt required to train the network: 

Ct=CeNt. It is clear that Ct cannot be calculated very precisely and it will surely vary 

depending on a given algorithm implementation, nevertheless it provides quite a useful 

outlook. There are two Ct values provided for NG and VSS: the upper one for sigmoid 

transfer function and the lower one for staircase transfer functions. 

 

In all cases Ct for VSS was lower than that for LM. In most cases, it was also lower 

than that for SCG, however for larger datasets the differences were vanishing and it is likely 

that for much larger networks and datasets then used in the experiments, SCG training could 

tend to be quicker than VSS training. 

 

Only VSS and LM were able to converge to the solutions with the lowest error on the 

training set (e.g. to classify all training set instances correctly, while the other algorithms 

made some errors on the training set). However, LM frequently did not converge to the 

solution and had to be repeated with other starting weights. The CR parameter in Table 2.7 
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expresses the convergence rate of algorithms, i.e. the percentage of the algorithm runs that 

converged to the desired solution within 300 cycles (600 for Thyroid trained with SCG). 

 

 

Table 2.7. Comparison of VSS, NG, LM and SCG algorithms.  
 

dataset % VSS  NG LM SCG 

network test Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct 

Iris 
96.0 3.5 - 100 

112 

84 
11 - 100 

175 

143 
20 - 80 - 54 - 90 245 

4-4-3 

Breast 
96.0 1.5 - 100 

64 

38 
4  -  100  

112  

76 
15 1.5 85 -  38 0.4 60 165  

10-4-2 

Mushrooms 
99.7 2.0 0.4 100 

160 

64 
21 0.4  100 

1070 

464 
6 240 90 566 45 40 100 90 

125-4-2 

Thyroid 
98.0 10 0.2 95 

697 

366 

80 

84 
0.2 0 

1724 

998 
43  30 60  1333 186 1.0 75  619 

21-4-3 

Shuttle 
99.0 6.0  1.6 100 

457 

287 

40 

42 
1.6  90  

1200 

789  
15 1400 60 1280 46 20 60  238 

9-6-7 
 

Nt - number of training cycles 

MB - memory usage in MB for storing network and training parameters, without memory used for the dataset 

(calculated by subtracting the memory used by the program running the algorithm on a given dataset from the 

memory used by the program with the given dataset loaded in memory and running the algorithm on the Xor 

dataset. Memory usage was measured with Task Manager) 

CR – convergence rate (percentage of training runs that converged to a given accuracy within 5000 training 

cycles) 

Ct  - total computational complexity (ratio of the total training time to the time of propagating the dataset 

through the network once) 

 
 

 

 

 
 

Fig. 2.35. Comparison of VSS, NG, LM and SCG algorithms (mean values from Table 2.7). 
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For VSS and NG the minimum and maximum number of training cycles in that a 

given algorithm converges to a given solution differed less than 30% from the mean number 

Nt given in Table 2.7, while for LM the difference was often up to 100%. VSS and NG 

algorithms had the smallest memory requirements. The performance of NG was poorer than 

that of VSS. The main difference between the algorithms is that NG uses directly gradient 

information, while VSS does not. 

 

 VSS does not converge in 100% runs for every dataset (see next chapter). It also did 

not outperform in every case the other algorithms so much as it could be concluded from the 

chart above. The chart is made for average values. Thus, the general tendencies shown in the 

plot below may reflect more faithfully the performance of VSS. 

 

 

 
 

Fig. 2.36. Comparison of VSS, NG, LM and SCG algorithms. General tendencies of relative 

training times in function of network and dataset size (upper bound for difficult, lower for 

easy to train datasets). 

 

Additional techniques such as weight freezing, weight pruning, calculating the error not on 

the entire dataset each training cycle (semi-batch or on-line training) or eliminating vectors 

that give the least error, lead to much shorter training times with each of the examined 

algorithms, but since the techniques can be used with all the compared algorithms they are 

not included here. The methods will be shortly discussed in chapter 2.5. 

 

 

 

 

2.4.6.  N-bit Parity Problems 

 
 The n-bit parity problems (chapter 1.2.5.2) are very difficult for MLP training 

algorithms. The following plots of MSE and accuracy on the training set in the function of 

training cycle show typical VSS performance on n-bit parity problems. 
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Fig. 2.37. MSE (red) and training accuracy (blue) during the VSS training of: left: Xor (2-2-

1), convergence rate ≈ 90%, right: 4-bit parity (4-4-1), convergence rate ≈ 98%. 

 

 

      
 

Fig. 2.38. MSE (red) and training accuracy (blue) during the VSS training of: left: 6-bit parity 

(6-32-1), convergence rate=100%, right: 6-bit parity (6-16-1), convergence rate ≈ 95%. 

 

  

      
 

Fig. 2.39. MSE (red) and training accuracy (blue) during the VSS training of 6-bit parity (6-

8-1). Left: successful training. Right: two vectors wrongly classified. In this case the 

convergence rate is about 40% but the accuracy of at least 96.88% (two vectors wrongly 

classified) is obtained in about 95% of the algorithm runs. 

 

 

 There are 2
(2-1)

=4 data clusters per class for the Xor (2-bit parity) problem, 2
(4-1)

=8 

clusters per class for 4-bit parity and 2
(6-1)

=32 clusters per class for 6-bit parity. If there are 32 

hidden neurons for the 6-bit parity problem, then the number of hidden neurons equals the 

number of data clusters per class and the network training is quite easy. Also 32 hidden 

neurons are required in this case for the SMLP network (chapter 3.2) to describe the 6-bit 

parity problem with logical rules – each hidden neuron generates one partial rule and the 

output neuron joins the partial rules with the OR operator. With only 8 hidden neurons the 

representation of particular data clusters is distributed among them using complex 
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dependencies, which are difficult to obtain in the network training, since the ravines on the 

error surface containing the global minima are very narrow (Fig. 1.17-left). In this case the 

VSS training converges to 100% accuracy in only about one third of the runs, depending on 

the starting point.  

 

 

 

2.4.7.   Conclusions 
 

It is clear that search-based techniques, popular in artificial intelligence and 

completely neglected in neural networks (with an exception of rarely used Alopex algorithm 

based on simulated annealing), may be the basis for network training algorithms. They may 

be used for initialization and in combination with traditional gradient-based techniques. 

However, so far the performance of VSS as a standalone algorithm has been more than 

satisfactory. It is fast, can find very good solutions and has low memory requirements. Since 

VSS is very simple to program (does not require calculation of derivatives and matrices), it is 

quite surprising that in empirical tests it performs not worse than LM and SCG. 

 

For the error surfaces of real-world datasets local minima in craters are extremely 

rare. Local search algorithms based on analytical gradient that do not have direct access to the 

influence of hidden layer weights on the network error cannot precisely determine the 

gradient direction and fall in spurious local minima. VSS does not fall in spurious minima 

and seldom requires multistart, only in that case when there is really no downward way from 

the starting point to one of the global minima.  

 

Although local optimization methods including VSS do not guarantee finding a global 

minimum for every problem, for the prevailing number of real-world problems they are 

sufficient and it is rarely required to use global optimization methods, which on the one hand 

have greater chance to find the solution for complex problems but on the other hand require 

much higher computational effort [Matthews 2000]. 

 

 

 

 

2.5.  Decreasing Training Time 
 

The methods of decreasing training time and improving generalization are outlined 

here because of their importance, though in most cases they can be used with any MLP 

training algorithms, not only with the search-based ones.  

 

2.5.1. Border Vectors 
 

 Neural networks are usually trained on all available data. Support vector machines 

start from all data but near the end of the training use only a small subset of vectors near the 

decision borders. The same learning strategy can be used with neural networks, 

independently of the actual optimization method used. The threshold for acceptance of 

vectors useful for training is dynamically adjusted during learning to avoid excessive 

oscillations in the number of support vectors. Benefits of such an approach include faster 
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training, identification of small number of support vectors near decision borders and may also 

include higher accuracy of the final solution. Moreover, for strongly imbalanced datasets 

(with small number of samples in some classes and large in other classes) the solution may be 

significantly better, automatically focusing on the same number of different classes vectors 

near the decision borders. 

 

 The goal of the Support Vector Neural Training algorithm [Duch 2004b] is to reduce 

the amount of training data, finding only those training vectors that are really needed to 

support the training process. Network weights are updated after presentation of the training 

data, depending on the difference between the target output values and the achieved network 

outputs. Patterns that are close to the decision borders give significant errors and should be 

used for further training. If a given pattern contributes to the error less than the threshold, 

then it is removed from further training.  

 
 

         
 

Fig. 2.40. Training vectors of the Iris dataset projected into two most significant input space 

features. Left: the entire training set. Right: vectors with the greatest error selected for further 

training. 

 

 

   
 

Fig. 2.43. Left: Error surface sections get flatter after the 8
th

 training cycle when border 

vectors are selected. Right: MSE and classification accuracy on the training set.  
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There is however one risk of such an approach. If the algorithm is not controlled 

carefully and the data are noisy, the classification process may invert the decision borders. 

There are two ways to prevent this: either to use efficient schemes of updating the threshold 

values [Duch 2004b] or to cluster the vectors with the lowest error instead of rejecting them. 

 

If some vectors are represented by points that lie very close to the proper output space 

hypercube vertex, they can be clustered and replaced by a single vector. This vector 

represents the cluster and its error is be multiplied by the number of that cluster instances. 

That guarantees that the decision borders will not be inverted. 

 

 
2.5.2.   Batch Versus Online Training 
 

Weights can be updated after the entire training set is presented and the error is 

calculated on the entire set (batch training). In order to decrease training times, only some of 

the vectors can be propagated through the network and after the partial error is calculated the 

weights can be updated (semi-batch training). In on-line training, the weights are updated 

after each single vector is presented. In the examples below, the training set is divided into 10 

parts for the Iris and 100 parts for the Mushrooms dataset. Every training vector is randomly 

assigned to one of the parts at each training cycle.  

 

 

Table. 2.8. Computational effort reduction of NG training obtained by dividing the training 

set into parts. 
 

dataset number of 

parts 

 

training time reduction (training time with 

calculating error on the whole data set = 1) 

Iris 10 0.30 

Wisconsin Breast 

Cancer 

10 0.18 

Mushrooms 100 0.047 

 

 

No modification of the weight update step is required with the number of parts in the 

training set shown in Table 2.8. However, if we decrease more the number of vectors on 

which the error is calculated at a time (the batch size), then it is required not to go to the 

minimum in the gradient direction, but to make a shorter step with NG. Similarly with VSS, 

when the error is calculated only on a few vectors the weight update can be calculated 

according to the diagram in Fig. 2.22, but then each weight should be updated about a value 

proportional to but smaller than the calculated one. If the update values are not smaller than 

the calculated (as well with NG as with VSS), then the weights will oscillate and the network 

will be unable to converge. 

 

On-line training decreases the training time about a smaller factor than the number of 

vectors in the training set. A detailed comparison between efficiencies of batch and on-line 

training using backpropagation was presented in [Wilson 2003]. Selected results from that 

work are summarized in table 2.9. Though the training time was different, the average 

generalization accuracy for on-line and batch training was practically the same. The authors 
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use about 60% of the original datasets for training and the rest for tests. Since they used a 

different training algorithm and different network structures, their results for Iris, Breast and 

Mushrooms differ from mine, but the same trend is visible: stronger acceleration is obtained 

for bigger datasets. The same authors also compared training times for the Digit Speech 

Recognition database, using various batch sizes. The results they obtained suggest that 

decreasing the batch size below a certain number of vectors does not cause further training 

acceleration.  

 

 

Table 2.9. Selected experimental results from [Wilson 2003]; training time reduction 

obtained with on-line BP in comparison to batch BP.  
 

dataset training 

set size 

training time 

reduction 

Iris 90 1.00 

Wisconsin Breast Cancer 410 0.71 

Mushrooms 3386 0.011 

Shuttle 5552 0.010 

Ionosphere 221 0.50 

average of 26 datasets 1329 0.05 

 

 

 

    
Fig. 2.44.  MSE and classification accuracy on (the actual part of) the training set. Training 

set divided into 10 parts. Iris (4-4-3) trained with: left - standard NG, right - NG with 

momentum. 

 

 

Semi-batch training, momentum, border vectors and weight freezing/pruning can be 

used together in any combination. However, this must be done carefully, since adding each 

method causes some loss of information. The information cannot be reduced too much, 

because then the training will not be able to converge. For that reason if some of the methods 

are combined together, each of them should modify the basic training algorithm less than if 

used separately (for example the optimal momentum can be 0.4 with batch training and 0.2 

with semi-batch training). All the methods work fine with big datasets. If the dataset is small 

and noisy, efficiency of the methods decreases but for small dataset there is no need for 

training acceleration. 
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Fig. 2.45. Iris (4-4-3) trained with standard NG. Training set divided into 10 parts. Left: 

weights of a selected hidden neuron. Right: weights of a selected output neuron.  

 

 

     
  
Fig. 2.46. Iris (4-4-3) trained with NG with momentum. Training set divided into 10 parts. 

Left: weights of a selected hidden neuron. Right: weights of a selected output neuron. 

 

 

  
 

Fig. 2.47. Mushrooms (125-8-2) trained with NG with momentum and 100 parts in the 

training set. Selected weights of an output neuron. 
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2.6. Improving generalization 
 

 

2.6.1.  Introduction 

 
Generalization is the neural network ability to learn the data structure and not the 

single data vectors used for network learning and consequently to make reasonable decisions 

for data unseen in the learning process. It is known from the approximation theory (Tikhonov 

regularization) and from the statistical learning theory that too precise learning on a training 

set leads to overfitting, which results in poor generalization ability [Łęski 2002]. Vapnik-

Chervonenkis (VC) theory is a general theory for estimation of dependencies from a finite set 

of data [Vapnik 1998]. The most important in the VC-theory is the structural risk 

minimization (SRM) principle. The SRM principle suggests a tradeoff  between the quality of 

the approximation and the complexity of the approximating function. A measure of the 

approximation function complexity is called VC-dimension (VCdim). 

 

VCdim is defined as the number of elements in the greatest set S, for which the system 

can perform all possible 2
n
 dichotomies of the set (linear divisions of the set into two parts). 

In the case of a network used for binary classification, VCdim equals the maximal number of 

training vectors that can be correctly reconstructed in all possible configurations. VCdim can 

be assessed as: 

 

 NhN ≤ VCdim ≤  2Nw(1+logNn) (2.42) 

 

where N is the dimensionality of input data, Nh is the number of neurons in the hidden 

layer, Nw is the number of weights in the network and Nn is the total number of neurons. If the 

sigmoid transfer functions are used, than according to [Hush 1993], VCdim can be assessed 

as: 

 

 VCdim=2Nw
   

(2.43)
 

 

    
 

Fig. 2.48. Two factors determining generalization: network complexity corresponding to 

VCdim (left) and number of training cycles (right).  
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It is usually difficult to design an optimal network structure before the training, 

especially in situations, where a complicated problem must be solved, and the system must 

make optimal use of a limited amount of training data. It is known from theory [Denker 

1987] and experiments that for a fixed amount of training data, networks with too many 

weights do not generalize well. On the other hand, networks with too few weights will not 

have enough power to represent the data accurately (Fig. 2.48-left). The best generalization is 

obtained by trading off the training error and the network complexity. 

 

The network complexity should correspond to the complexity of the problem the 

network must solve [Jankowski 1999]. The first choice for the number of hidden neurons 

may be the geometric mean of the input and output neuron numbers. However, if the data is 

simple then fewer hidden neurons or no hidden neurons at all will be optimal while for 

complex data more hidden neurons must be used. Not only the number of neurons should be 

properly selected but also the fully connected network is not always optimal and some 

weights can frequently be removed. A simple method of removing irrelevant weights was 

discussed in chapter 2.4.3. The purpose of that method was rather decreasing training times, 

although it also leads to improvement in network generalization.  

 

The ideas of some popular methods aiming at improving generalization are presented 

below. Since the methods can be used with many training algorithms, not only with the 

search-based ones, they will be only shortly outlined. 

 

 

 

2.6.2.  Early Stopping 
  

The idea is to use two datasets, one for training and one for validating the 

generalization performance. Typically, both the training and validation errors will decrease 

initially but the validation error will start to increase at some point (Fig. 2.48-right). Thus, the 

training should be stopped when the error on the validation set starts to increase.  

 

This can be explained in two ways. The first explanation (maybe better suited for 

networks trained for regression problems) is that network learning typically starts from small 

random weights. This corresponds to simple, essentially linear mappings. As the training 

proceeds, the weights grow and the network mappings become increasingly nonlinear, i.e. the 

model complexity grows.   

 

The second explanation is that first all neurons try to solve the task, which mostly 

reduced the network error, and then the remaining tasks as presented in the figures below. 

However, from the generalization point of view it is not always desired to solve all the 

remaining tasks.  

 

The network with 2 inputs (corresponding to X and Y in Fig. 2.49-left), 20 hidden 

units and 1 output is trained on the dataset shown in Fig. 2.49-left. The aim of the training is 

to obtain the following network output signal: 

 

0 for the instances shown in red 

1 for the instances shown in blue 
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The three remaining figures show the network output (vertical axis) corresponding the 

particular points of the input space area (the output signal value 0.5 corresponds to the 

decision border). After 3 training cycles of VSS the network is in the optimal state, though 

two training vectors are still misclassified. After 10 training cycles, the accuracy on the 

training set is 100%, but it is obvious looking at Fig. 2.50-right that such a network has poor 

generalization abilities. 

                            
 

Fig. 2.49. Left: class distribution of the training set. Right: decicion borders after 1 training 

cycle of VSS (84% accuracy on the training set). 
 

 

       
Fig. 2.50. Left: decision borders after 3 training cycles of VSS (92% accuracy on the training 

set). Right: decision borders after 10 training cycles of VSS (100% accuracy on the training 

set). 

 

 

 

2.6.3.  Weight regularization 
 

One technique to reach this tradeoff between the training error and the network 

complexity is to minimize the cost function composed of two terms: the ordinary training 

error, plus some measure of the network complexity. The effect of using weight 

regularization is similar to that of early stopping.  

 

In the simplest weight decay model, the penalty term for big weight values is added to 

the error function as the sum of all the weight squares. The error function is: 
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As a result, the error surface lifts up (Fig. 1.23), less near the center and more further 

from the center, thus we can see a superposition of the original ES with the paraboloid caused 

by the regularization term. It is obvious that the weights will not grow much in this situation.  

 

Nevertheless, this quadratic regularization term has one disadvantage. It influences all 

weights with the same strength, while frequently the best results can be obtained if some 

weights are allowed to grow to relatively high values and the others are set to zero 

[Jankowski 1999]. 

 

To solve this problem a weight elimination method was proposed [Weigend 1990, 

1991], where the regularization term added to the error function is: 
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in this case, the limit of the regularization term for a single weight is c and not infinity, as in 

the standard weight decay regularization form. 

 

 

 

2.6.4.  Stretched Sigmoids and Desired Output Signals 0.1 and 0.9 
 

At the final stage of MLP trainings the weights of output layer neurons tend to grow 

to very high values. This is caused by the sigmoidal transfer function properties (Fig. 1.2- 

a,b). To obtain zero error, the output neuron signals must be zero or one (-1 and +1 in the 

case of hyperbolic tangent). This is possible only with infinite weighted sum of the neuron 

inputs and that forces the infinite growth of weights. To improve network generalization and 

to prevent the training algorithm from wasting time for the excessive increase of output 

neuron weights, achieving the training goals must not require infinite weight values. One 

possibility is to use a stretched sigmoid (Fig. 1.18.b) or other transfer functions that reach the 

training target value for a finite argument [Duch 1999b]. Another possibility is to set the 

targets as 0.1 and 0.9 instead of 0 and 1.    

 

 

 
2.6.5.  ε-insensitive Learning 

 
 The ε-insensitive loss function has the following form: 

 

   ),0max(  EE  (2.46) 

 
Roughly, the idea of this method is that the error must decrease at least by ε to accept the 

change of parameters leading to the error decrease. The ε-insensitive learning applied to 

neuro-fuzzy models was considered in [Łęski 2002]. Since neuro-fuzzy models can perform 

thinking tolerant to imprecision, but neural network learning methods are zero-tolerant to 



 113 

imprecision, this can remove the inconsistency thus leading to better generalization. The 

insensitive threshold t will be further used in this thesis to improve classification rules 

produced by SMLP networks (chapter 3.2). 

 

 

2.6.6.  Optimal Brain Damage (OBD) and Optimal Brain Surgeon (OBS) 
 
 The basic idea of OBD is that it is possible to take a perfectly reasonable network, 

delete half (or more) of the weights and achieve a network that works just as well, or better 

[LeCun 1990]. The saliency of a weight is defined as the change of the error function caused 

by deleting the weight. A simple strategy consists in deleting weights with small saliency. It 

can be observed that frequently small weights have the least saliency, so a reasonable initial 

strategy is to train the network and delete small weights. Then the network should be 

retrained. This procedure can be repeated iteratively. 

 

The main point of OBD is to move beyond the approximation that magnitude equals 

saliency and propose a saliency measure that uses the second derivative of the error function 

with respect to the weights. The error function can be approximated by Taylor series: 
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When the training is finished, it can be assumed, that the network is in the error function 

minimum and the first term of  (2.46) can be ignored. Also the terms higher than the second 

one can be ignored.  Only the second term (Hessian 
2

2

dw

Ed
H  ) is important. LeCun assumed 

that only the Hessian diagonal is important, so (2.47) can be written as 
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The saliency of each weight is defined as 

 

 2

iiii wHs   (2.49) 

 

The OBD procedure can be carried out as follows: 

1. choose a network architecture 

2. train the network until a reasonable solution is obtained 

3. compute the second derivatives Hii for each weight 

4. compute the saliencies si for each weight  

5. sort the parameters by saliency and delete some low-saliency parameters 

6. go to step 2. 
 

Optimal Brain Surgeon [Hassibi 1993] also uses only the second term in the Taylor 

series (Hessian). The weight saliency in OBS is: 
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and after the selected weights are pruned all remaining weights are modified about the value 

dwi: 
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where Ii is a vector consisting of one at the i-th position and zeros elsewhere. 

 

 

 

2.6.7.  Statistical Weight Analysis 

 
 The statistical approach to weight pruning is based on cumulating the differences 

among different weights in one epoch [Finnhoff  1993][Cottrell 1995]. The weight saliencies 

are defined as 
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where wi is the weight value before the actual epoch, dwi
j
 is the change of the weight wi as a 

response to the presentation of the j-th training vector, mean(dwi) is the mean value and the 

std(dwi) is the standard deviation of all the weight changes in the actual epoch. The value si is 

large if the weight is large and its changes are small, otherwise si is small and the weight is 

supposed to be relatively useless. 

 

 

  

2.6.8.  Growing Networks 
 

 Another approach to trading off the training error and the network complexity can be 

obtained by starting with a very small network and then adding gradually neurons as 

required. This constructive approach is used by many algorithms [Fahlman 1990][Jankowski 

1999, 2003][Adamczak 2001], also by the SMLP network presented in chapter 3.2. If the 

network without a hidden layer is not sufficient, then the hidden neurons can be added one by 

one until the results are satisfactory. That can be realized in several ways. 

 

Perhaps the best-known network-growing algorithm is the cascade correlation 

[Fahlman 1990], which adds the hidden neurons using cascade connection. The network is 

able to fit perfectly into the training data with limited number of neurons, however the results 

with crossvalidation or on test sets are not better than for other classification algorithms. 

 

A method used by SMLP networks is described in detail in chapter 3.2. The SMLP network 

has a separate hidden neurons assigned to particular classes. It starts with one hidden neuron 

per class and the others are added as needed. 
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Part 3 

 

Logical Rule Extraction from  

MLP Networks 
 

 

 

 

 

3.1.  Review of Rule Extraction Algorithms  
 

 

3.1.1. Decision Trees 

 
3.1.1.1. Introduction 

 

Decision trees are a form of recursive partitioning [Lewis 2000]. Each node can be 

split into two or more child nodes, in which case the original node is called a parent node. 

“Recursive” means that the partitioning process can be applied repeatedly. Thus, each parent 

node can give rise to child nodes and, in turn, the child nodes can split themselves into two 

further nodes.  

 

The attractiveness of tree-based methods is in large part due to the fact that decision 

trees represent rules by their nature [Ho Tu Bao 2002]. Therefore, the explanation of any 

particular classification or prediction is relatively straightforward. Decision-tree building 

algorithms have the ability to clearly indicate best splits. They put the split that divides into 

classes the largest number of training records at the root node of the tree. The second strength 

is that decision trees can deal with continuous and categorical variables. Categorical variables 

pose problems for some neural networks and statistical techniques. Discretization of 

continuous features by decision trees is a by-product of applying the splitting criteria in the 

process of tree building.  

 

There are also many weaknesses of decision tree methods. Decision trees are less 

appropriate for estimation tasks where the goal is to predict the value of a continuous variable 

and for time-series data. Some decision-tree algorithms can only deal with binary-valued 

target classes, others are able to assign records to an arbitrary number of classes, but are 

error-prone when the number of training examples gets small. The process of growing a 

decision tree is computationally expensive. At each node, each candidate splitting attribute 

must be sorted before its best split can be found. Pruning algorithms can also be expensive 

since many candidate sub-trees must be formed and compared. Most decision-tree algorithms 

are univariate, examining only a single feature at a time. This leads to hyperrectangular 
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decision borders that may not correspond well with the actual distribution of points in the 

class space.  

 
 

3.1.1.2. CART 

 

CART (classification and regression tree) [Breiman 1984], is a binary decision tree 

algorithm, which has exactly two branches at each internal node. The idea of impurity used in 

CART is formalized in the GINI index for the current node c: 

 

 
j

jpcGINI 21)(  (3.1) 

 

where pj is the probability of class j in node c. For each possible split the impurity of the 

subgroups is summed and the split with the maximum reduction in impurity is chosen. For 

ordered and numeric attributes, CART considers all possible splits in the sequence. For n 

values of the attribute, there are n-1 splits. For categorical attributes CART examines all 

possible binary splits. For n values of the attribute, there are 2
n-1

-1 splits. At each node CART 

searches through the attributes one by one. For each attribute it finds the best split. Then it 

compares the best single splits and selects the best attribute of the best splits. 

 

CART analysis consists of four basic steps [Lewis 2000]. The first step consists of 

building a tree using recursive splitting of nodes, during which each node is assigned a 

predicted class in a way that minimizes the a priori given misclassification costs. The second 

step consists of stopping the tree building process. At this point a maximal tree has been 

produced, which probably greatly overfits the information contained within the learning 

dataset. The third step consists of tree pruning. CART treats pruning as a tradeoff between 

two issues: getting the right size of a tree and accurate estimate of the true probabilities of 

misclassification. This process known as minimal cost-complexity pruning results in the 

creation of a sequence of simpler and simpler trees, through gradually cutting off the 

increasingly important nodes. The fourth step consists of optimal tree selection, during which 

the tree that fits the information in the learning dataset, but does not overfit the information, 

is selected from the sequence of pruned trees.  

 

 

3.1.1.3. ID3 

 

ID3 algorithm selects which attribute to test at each node in the tree, according to the 

information gain (entropy). The information gain measures how well a given attribute 

separates the training examples according to their target classification. ID3 uses this 

information gain measure to select among the candidate attributes at each step while growing 

the tree [Quinlan 1986][Mulawka 1996].  

 

Entropy that measures homogeneity of examples (characterizes the purity of an 

arbitrary collection of examples) is used to define information gain precisely. Given a 

collection S, containing positive and negative examples of some target classes, the entropy of 

S relative to the Boolean classification is  
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where pi is the proportion of positive examples in S and nc is the number of classes. In all 

calculations involving entropy we define 0log0 to be 0. The information gain, Gain (S, A) of 

an attribute A, relative to a collection of examples S, is defined as  
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The central focus of the ID3 algorithm is selecting which attribute to test at each node 

in the tree, according to the following procedure: 

1. See how the attribute distributes the instances.  

2. Minimize the average entropy (calculate the average entropy of each test attribute 

and choose the one with the lowest degree of entropy).  

 

Quinlan [Quinlan 1986] proposed a window-based rule, where only some randomly 

chosen instances (window) are considered at each iteration step and exception from the 

generated rules are searched for in the remaining data. 

 

 

3.1.1.4. C4.5 

 

C4.5 is a an extension of the basic ID3 algorithm designed by Quinlan to address 

issues not dealt with by ID3 [Hamilton 2002][Quinlan 1986], such as: avoiding overfitting 

the data (determining how deeply to grow a decision tree), reduced error pruning, rule post-

pruning, handling continuous attributes, choosing an appropriate attribute selection measure, 

handling training data with missing attribute values, handling attributes with different costs 

and improving computational efficiency.  

 

 

3.1.1.5.   SSV Tree  

 

The SSV (Separability of Split Value) criterion [Grąbczewski 2003] allows to 

separate objects with different class labels. It can be applied to both continuous and discrete 

features. The best split value is the one that separates the largest number of pairs of objects 

from different classes.  The split value (or cut-off point) is defined differently for continuous 

and discrete features. In the case of continuous features, the split value is a real number, in 

other cases it is a subset of a set of alternative values of the feature. In all cases the left side 

(LS) and right side (RS) of a split value s of feature f can be defined for a given dataset D. 

 

LS(s, f, D) = {x  D : f(x) < s}  if f is continuous (3.4) 

LS(s, f, D) = {x  D : f(x) s}   otherwise 

 

RS(s, f, D) = D - LS(s, f, D) (3.5) 
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 (3.6) 

where C is the set of classes and Dc is the set of data vectors from D which belong to class c. 

According to the SSV criterion the best split value is the one which separates the maximal 

number of pairs of vectors from different classes and among all split values that satisfy this 
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condition – the one which separates the smallest number of pairs of vectors belonging to the 

same class. For every dataset containing vectors, which belong to at least two different 

classes, for each feature, which has at least two different values, there exists a split value of 

maximal separability. 

 

 The SSV criterion can be used to build decision trees. Since the SSV criterion easily 

finds the best split points, the generated trees can be small, and can be converted into a small 

number of crisp logical rules. The classification trees are built by finding the best split of the 

dataset (which becomes a node of the tree) and splitting the data into two parts for further 

recursive analysis. 

 

 

 

3.1.2. Neural Networks 

 
3.1.2.1. Introduction 

 
 Neural network-based rule extraction algorithms fall into two categories: black-box 

(global) and decompositional (local) methods.  

 

In black-box methods, the analysis of all the network outputs is performed for 

different inputs, without analyzing the network weights. The network is used to predict the 

class of the instance but the rules are extracted by some other methods, e.g. by decision trees. 

 

Decompositional methods analyze fragments of the network, usually single nodes to 

extract rules. Such networks are based either on sigmoidal functions (step function is the 

logical limit) or on localized functions. Using step functions, the output of each neuron 

becomes logical (binary), and since the transfer functions are monotonic and their output 

values are zero and one, it is enough to know the sign of the weight to determine whether its 

contribution to activation of a given unit is negative or positive. Rules corresponding to the 

whole network are combined from rules for each network node.  

 

Andrews [Andrews 1995] introduced the following set of criteria for logical rule 

extraction from data using neural networks: 

1. Expressive Power (IF...THEN rules,  fuzzy rules, other rules) 

2. Translucency (degree in which the rule extraction algorithm looks inside the network) 

3. Portability (how well the rule extraction technique covers the set of available network 

architectures) 

4. Quality 

   - rule accuracy 

   - rule fidelity (how well the rules mimic the NN behavior) 

   - rule consistency (the extend to which equivalent rules are extracted from different 

     networks trained on the same task)  

   - rule comprehensibility (readability of rules and size of the rule set) 

5. Algorithmic complexity. 
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3.1.2.2. Validity Interval Analysis (VIA) 

 

An example of global methods is Validity Interval Analysis (VIA) proposed by Thrun 

[Thrun 1995]. VIA is a generic approach to analyzing the input-output behavior of MLP 

networks. The key idea in VIA is to attach intervals to the activation range of each neuron (or 

a subset of all neurons), such that the network activation must lie within these intervals, 

called validity intervals I. VIA checks whether there exists a set of network activations inside 

the validity intervals. It does this by iteratively refining the validity intervals, excluding 

activations that are probably inconsistent with other intervals. The obtained rules are 

prepositional if-then rules, where the precondition is given by a set of intervals for the 

individual input values and the output is a single target category. Rules of this type can be 

written as: 

 

 if (input contains in the hypercube I) then class is C  (or shortly: I → C) 

 

Two types of approaches can be distinguished: specific-to-general and general-to-

specific. In a specific-to-general approach we start with rather specific rules that are easy to 

verify and gradually generalize those rules by enlarging the corresponding validity intervals. 

Imagine one has a training instance that, without loss of generality falls into class C. The 

input vector of that instance already forms a (degenerated) set of validity intervals I. VIA 

applied to I will confirm the membership in C and hence the single point rule  I → C. Starting 

with I a sequence of more general rule preconditions can be obtained by gradually enlarging 

the precondition of the rule (i.e. the input intervals I) and verifying if the new rule is still a 

member of its class. In a general-to-specific approach we start from rules like “everything is 

in class C” and then new a rule can be generated by splitting the hypercube spanned by the 

old rule. 

 

 

3.1.2.3.  TREPAN 

 

 The TREPAN [Craven 1996a, 1996b] algorithm combines decision trees with neural 

networks. Decision trees are induced on the training data, plus the new data obtained by 

perturbing the training data. The additional training data are classified by the neural network. 

Nodes in the decision tree are split only after a large number of vectors that fall in a given 

node have been analyzed. Therefore, this method is more robust than direct decision tree 

approaches, which suffer from a small number of cases in the deeper branches. The algorithm 

runs as follows: 

1. Take a trained network and a set of training data as inputs 

2. As output, produce a decision tree 

3. Use the network to label the instances 

4. Incrementally add nodes to the decision tree 

The function to evaluate node N is  f(N) = reach(N)·(1 – fidelity(N)), where reach(N) is the 

estimated fraction of instances that reach node N and fidelity(N) is the extend to which the 

extracted representations accurately model the network for those instances. 
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3.1.2.4.  RULENEG 

 

The RULENEG algorithm [Hayward 1996] is black-box algorithm for binary attributes based 

on the idea that a conjunctive rule only holds if all antecedents are true. Thus a systematic 

negation of antecedents in a hypothesized rule can show, which antecedents have to be true to 

make the rule true. The network is used to test the hypothesized rule. 

The algorithm can be described by the following pseudocode [Neumann 1998]: 

 

rule system = empty 

for every training example E 

 find classification P of the network for E 

 if E is not classified by a rule in a rule system 

  initialize a new rule for P and E 

  for every attribute A in E 

   if negation of A leads to classification P (classification does not depend on A) 

    remove A from the rule 

endif 

endfor 

endif 

endfor 

 

 

3.1.2.5.  BIO-RE, Partial-RE and Full-RE 

 

BIO-RE [Taha 1996] [Neumann 1998] stands for Binarised Input-Output Rule 

Extraction. It is a black-box algorithm that extracts binary rules from any neural network. 

BIO-RE consists of the following steps: 

1. Obtain the output of the network for each possible pattern of input attributes 

2. Generate a truth table by concatenating each input pattern with its corresponding net 

output 

3. Generate boolean functions from the truth table 

 

Partial-RE is a decompositional algorithm that consists of the following steps: 

1. For each hidden and output neuron order incoming connections according to their 

weights 

2. Find individual incoming connections that cause the neuron to fire, if they exist 

3. For a connection between neurons i and j, generate rules IF ji
jc
 with believe cj that 

is equal of the activation value of the neuron j. Mark the connection as being used in 

the rule 

The search for single strong connections continues until the first one not strong enough to 

activate the neuron by itself is found. If more detailed information is required, the algorithm 

looks for combinations of two or more unmarked connections that activate the neuron. 

Finally, rule antecedents representing hidden neurons are replaced by the corresponding set 

of input attributes. 

 

Full-RE extracts all possible rules and corresponding certainty factors. For each 

neuron the following rule is generated: jxwxwxw
jc

jnnjjj  ]...[ 2211 , where w denotes 

the weight and x the input. 
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3.1.2.6.  RX 

 

The RX algorithm [Setiono 1995] [Neumann 1998] runs as follows:  

1. Train and prune the NN 

2. Discretize the activation values of the hidden units by clustering 

3. Generate rules that describe the network outputs using the discretized activation 

values 

4. For each hidden unit: 

a. if the number of input connections is less than an upper bound, then extract 

rules to describe the activation values in terms of the inputs 

b. else form a subnetwork 

i. set the number of output units equal to the number of discrete 

activation values. Treat each discrete activation values as a target 

output 

ii. set the number of input units equal to the number of inputs connected 

to the hidden units 

iii. introduce a new hidden layer 

iv. apply RX to this subnetwork 

     5. Generate rules that relate the inputs and the outputs by merging rules generated  

          in step 3 and 4. 

 

 

3.1.2.7.  Subset Algorithms 

 

A number of decompositional approaches such as SUBSET [Towell 1991], KT [Fu 

1994], RULE-OUT [Decloedt 1996] and Destructive Learning [Yoon 1994] differ only in 

some details but share the same technique for the rule extraction process: 

 

For each hidden and output neuron C: 

1. Find all combinations p with positive weights to C whose sum exceeds the threshold 

of C 

2. For each p = {p1,...,pi} 

a. find the set Sn of all combinations of negative weights to C, such that the sum 

of the weights of p and the weights of N-n exceeds the threshold of C, where N 

is the set of all negative weights for C and n is an element of Sn 

b. for each element n = {n1,...,nj} create the rule: 

         if p1,...,pi, not n1,..., not nj then C 

 

 

3.1.2.8.  M-of-N 

 

To overcome the high complexity of SUBSET and to further increase the 

comprehensibility of a rule system, Towell [Towell 1991] developed the following M-of-N 

algorithm: 

1. For each neuron, cluster the incoming connections into groups with similar weights 

2. Average the weights within each cluster 

3. Eliminate the clusters without significant effect on the output of the neuron 

4. re-train the network with frozen weights to optimize biases 

5. form a single rule for each neuron 

6. simplify rules to M-of-N form 
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3.1.2.9.  RULEX 

 

 The RULEX [Andrews 1994] algorithm is based on constrained MLP networks with 

pairs of sigmoidal functions combined to form ridges or local bumps. Rules in this case are 

extracted directly from an analysis of the weights and thresholds. Disjoined regions of the 

data are covered by different hidden units. In effect, this method is similar to a localized 

network with step activation functions. The method works with continuous as well as with 

discrete inputs 

 

 

3.1.2.10. NeuroRule and M-of-N3 

 

Neurorule and M-of-N3 are two similar decompositional algorithms developed by 

Setiono [Setiono 2000a]. They share the common network training and rule extraction 

technique: 

 

1. Select and train the network to meet the prespecified accuracy requirement 

2. Remove the redundant connections in the network by pruning while maintaining its 

accuracy. Steps 1 and 2 can be repeated several times if required. 

3. Discretize the hidden unit activation values of the pruned network by agglomerative 

clustering (the neighboring activation values of different input patterns are joined 

together as long as this does not change the network classification) 

4. Extract rules that describe the network outputs in terms of the discretized hidden unit 

activation values (find any combination of hidden neuron signals that causes the 

output neuron to fire, i.e. to produce the positive output signal) 

5. Generate rules that describe the discretized hidden unit activation values in terms of 

network inputs (find any combination of inputs that makes the hidden neuron 

activation within particular discretization interval)  

6. Merge the two sets of rules to obtain a set of rules that relates the inputs and outputs 

of the network 

 

Both the hidden and output neuron use hyperbolic tangent transfer functions. The 

algorithms require discrete input data. The present value of a given feature is coded as +1 and 

the absent values as –1. The training process starts with an oversized network that is 

successively pruned. In the case of M-of-N3, after the small weights are removed, the 

remaining positive weights are set to +1 and the negative ones to –1. Since the network 

training starts with random weights, different rule sets can be extracted from the same 

dataset, depending on the initial weights distribution. In the discussion with me, Setiono 

admitted that in general he considers Neurorule the best of his rule extraction algorithms. 

 

 

3.1.2.11.  FERNN  

 

Since the repetitive network training and pruning is a time consuming process, 

Setiono proposed an algorithm for ”Fast Extraction of Rules from Neural Networks” 

(FERNN) [Setiono 2000b], which extracts the rules without weight pruning in the following 

way: 
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1. Identification of useful hidden units based on the information contained in these units. 

For this purpose C4.5 is employed. 

2. Identification of relevant connections from the input units to the useful hidden units 

based on magnitudes of their weights. 

 

Thus it can be said that FERNN is a mixed algorithm: it performs the analysis of the 

input-to-hidden weights but uses the black-box approach (by employing C4.5) to hidden-to-

output weights.  

 

 

3.1.2.12.  FSM 
 

 FSM (Feature Space Mapping) [Adamczak 2001] is a constructive neural network that 

estimates probability density of input-output pairs in each class. The architecture of the FSM 

network, which is based on the RBF network architecture, consists of three layers (input, 

hidden and output). The number of nodes in the hidden layer depends on the problem and is 

found automatically during the training phase. There can be only one node in the output 

layer, which estimates the confidence of the classification or there can be one output node per 

class.  

 

 Generally, there is no restriction upon the type of transfer functions in the FSM 

model, however so far only localized functions G, such as gaussian, bicentral, triangular and 

rectangular, were used: 
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Rectangular functions are especially useful for crisp logical rule extraction, other functions 

lead to fuzzy rules. The FSM network realizes the following function: 
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 The initial structure of the network includes input and output units and a single layer 

of hidden units with parameters determined by a clustering algorithm [Duch 1997]. For on-

line learning, the initialization of additional hidden nodes is performed after a fixed number 

of incoming training vectors. One of the problems with RBF networks is their inability to 

select relevant input features. In FSM feature selection is performed by adding a penalty term 

for small dispersions to the error function.  

 

 

3.1.2.13.  MLP2LN 

 

The MLP2LN network uses the same structure as the SMLP network (Fig. 3.1), 

however the two networks use quite different training algorithms. 

 

To facilitate extraction of logical rules from an MLP network, one can transform it 

smoothly into a network performing logical operations – a logical network (LN). This 

transformation is the basis of the MLP2LN algorithm [Adamczak 2001]. One can try to 

extract logical rules from an already trained network. However, starting from a single neuron 

or constructing the LN using training data directly (constructive, or C-MLP2LN algorithm) is 
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faster and usual more accurate. Since the interpretation of MLP network activation is not 

easy, a smooth transition from MLP to a logical type of network performing similar functions 

is advocated. This transition is achieved during network training by the following: 

 

1. Increasing gradually the slope of sigmoidal functions to obtain crisp decision regions. 

2. Simplifying the network structure by inducing the weight decay through a penalty 

term. 

3. Enforcing integer weight values –1, 0, 1 interpreted as: 0 = irrelevant input, 

-1 = negative evidence, +1 = positive evidence. These objectives are achieved by 

adding two additional terms to the error function: 
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The first part is the standard MSE measure of matching the network output y with the 

desired output d for all output neurons c corresponding to particular classes and all training 

data samples v. The first term scaled by 1 is used frequently in the weight pruning or 

regularization methods to improve generalization of MLP networks. A naive interpretation of 

why such regularization works is based on the observation that small weights mean that only 

the linear part of the sigmoid is used. Therefore, the decision borders are rather smooth. On 

the other hand, for logical rules, sharp decision borders are needed. To achieve these 

objectives, the first regularization term is used at the beginning of the training to force some 

weights to become sufficiently small to remove them. 

 

The second regularization term, scaled by 2 has a minimum (zero) for weights 

approaching –1, 0 and +1. The first term is switched off and the second increased in the 

second stage of the training. This allows the network to increase the remaining weights and, 

together with increasing slopes of the sigmoidal functions, to provide sharp, hyperrectangular 

decision borders. Thus, the network is transformed into a logical network by increasing the 

slope of sigmoidal functions to infinity, changing them into the step functions. Such a process 

is difficult, since a very steep sigmoidal functions leads to the noncontinuous gradients.  

 

The training can process separately for each output class. A single hidden neuron per 

class is created and trained using a backpropagation procedure with regularization. 1 and the 

slopes of sigmoidal functions are increased gradually and weights with a magnitude smaller 

than 0.1 are removed. 2 is then increased until the remaining weights reach –1, 0, 1 +/- 0.05. 

Finally very large slopes (about 1000) and integer weights –1, 0, 1 are set, effectively 

converting neurons into threshold logic functions. The weights of existing neurons are frozen 

and new neurons (one per class) are added and trained in the same way as the first ones. This 

procedure is repeated until all data samples are classified correctly, or until the number of 

obtained rules grows sharply, indicating overfitting (for example one or more rules per one 

new vector classified correctly are obtained). 

 

The C-MLP2LN network expands after a neuron is added and then shrinks after 

connections with small weights are removed. A set of rules is found for each class separately. 

The output neuron for a given class is connected to the hidden neurons created for that class. 

In some cases, only one hidden neuron can be sufficient to learn all instances, becoming an 

output neuron rather than a hidden neuron. Output neurons perform summation of the 

incoming signals and have either positive weight +1 (adding more rules) or negative weight –
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1. The last case corresponds to those rules that cancel some of the errors created by the rules 

found previously that were too general. They may be regarded as exceptions to the rules. 

 

The network requires discrete inputs. If the data is continuous it must be discretized 

before giving it to the network inputs. Domain knowledge that can help to solve the problem 

can be inserted directly into the network structure, defining initial conditions, which could be 

modified further in view of the incoming data. Since the final network structure becomes 

quite simple, inserting partially correct rules to be refined by the learning process is quite 

straightforward. 

 

 

 

3.1.3. Fuzzy and Neuro-Fuzzy Systems 

 

 The fuzzy modeling is based on the premise that human thinking is tolerant to 

imprecision, and the real world is too complicated to be described precisely [Łęski 2002]. A 

neuro-fuzzy system is a fuzzy system trained with some algorithm derived from the neural 

network domain. The integration of neural networks and fuzzy systems aims at the generation 

of a more robust, efficient and easily interpretable system where the advantages of both 

models are kept and their possible disadvantages are removed. 

 

A neuro-fuzzy interference system (NFIS) performs multi-input-single output fuzzy 

mapping X→Y, where X  R
n
 and Y  R. The main blocks of the NFIS are: fuzzifier, rule 

base, inference and defuzzifier. The fuzzifier performs a mapping from the observed crisp 

input space X  R
n  

to the fuzzy sets. The fuzzy rule base consists of a collection of N fuzzy 

if-then rules, aggregated by disjunction or conjunction. The fuzzy inference determines a 

mapping from the fuzzy sets in the input space X to the fuzzy sets in the output space Y. Each 

of N rules determines a fuzzy set B. The defuzzifier performs a mapping from a fuzzy set B to 

a crisp point y in Y  R. The training algorithm is based on backpropagation. 

 

 

3.1.3.1. FLEXNFIS 

 

There are two approaches to NFIS designing: the Mamdani method, where 

conjunction is used for inference and disjunction to aggregate individual rules and the second 

“logical-type” method, where fuzzy implications are applied to inference and conjunction to 

aggregation. Frequently Mamdani-type systems are more suitable to approximation problems, 

whereas logical-type systems may be preferred for classification problems. 

 

The FLEXNFIS model [Rutkowski 2003] can learn not only the parameters of the 

membership functions but also the type of systems (Mamdani or logical). Consequently, the 

structure of the system is determined in the learning process. Several types of FLEXNFIS 

systems can exist. For example, the AND-type FLEXNFIS is characterized by the 

simultaneous appearance of Mamdani-type and logical-rule systems, while the OR-type 

FLEXNFIS depending on a certain parameter exhibits “more Mamdani” or “more logical” 

behavior.  
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3.1.3.2. NEFCLASS  

  

 The NEFCLASS model [Nauck 1999][Hoffmann 2002] is based on a three-layer 

fuzzy perceptron network. It uses fuzzy sets as weights between the input and the hidden 

layer and 0/1 weights between the hidden and the output layer. Input neurons correspond to 

the features, hidden neurons represent the fuzzy rules and output neurons represent different 

classes. A fuzzy if-then rule is generated by a hidden neuron by assembling all its connection 

weights to input layer in the antecedent part and by setting the conclusion part equal to the 

class of the output neuron to which the hidden neuron is connected. 

 

 Prior to the learning process, each feature is equipped with a number of fuzzy sets. 

The sets are associated with linguistic terms, which in turn form the universe of input to 

hidden layer connection weights and thus make up the granularity of description for each 

feature in the antecedent part of the rule. The fuzzy sets can be shifted or their core or support 

can be expanded or contracted in the learning process, but their connections with the 

linguistic terms remain fixed. 

 

 The rule induction algorithm consists of three parts: 1 – creation of an initial set of 

rules, 2 – selection of the best rules according to some criterion, 3 – the fine tuning of the 

fuzzy sets that model the linguistic terms. The third step, called fuzzy backpropagation, uses 

a fuzzy heuristic variant of the gradient descent method.   

 

 

3.1.3.3.  FuNN 

 

The FuNN model [Kasabov 1996, 1999, 2003] is based on a five-layer feedforward 

neural network. The first layer of neurons receives the input information. The second layer 

calculates the fuzzy membership degrees to which the input values belong to the predefined 

fuzzy membership functions. The third layer of neurons represents associations between the 

input and the output variables, fuzzy rules. The fourth layer calculates the degrees to which 

output membership functions are matched by the input data. The fifth layer calculates the 

exact values for the output variables defuzzification. The number of neurons and connections 

can be dynamically changed by the training algorithm. 

  

The membership functions used to represent fuzzy values are triangular with the 

centers of triangles being attached as weights to the corresponding connections. The 

membership functions can be modified through learning, changing the centers and the widths 

of the triangles. Several training algorithms, such as backpropagation or genetic algorithms 

have been developed for FuNN, as well as several rule extraction algorithms. 

 

 

3.1.3.4.  Four-layer Neuro-fuzzy Systems 

 

 An interesting four-layer neuro-fuzzy scheme for designing a rule-based classifier 

along with feature selection was proposed in [Chakraborty 2004], however the authors did 

not name their solution. The network is trained with backpropagation in three phases. In the 

first phase, the network learns the important features and the classification rules. In the 

subsequent phases, the network is pruned to an “optimal” architecture that represents an 

“optimal” set of rules. The pruned network is further tuned to improve performance.  
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 The first layer consists of input nodes, the second one performs fuzzification and 

feature analysis, the third one contains antecedent nodes (each node in this layer represents 

the if part of a rule) and the forth one contain the output nodes that represent the then part of 

the rules. 

 

 

 

3.1.4. Hybrid Systems 
 

 Two hybrid systems in which the neural network is use for the improvement of the 

input data quality and another system is used for rule extraction are presented here. Neural 

networks proved to be capable of providing solutions for some cases of medical diagnosis of 

higher quality than decision trees and some other systems. However, despite their success 

they had problems with being widely accepted by the medical community due to the lack of 

transparency in the methods they use to reach the diagnosis. A critical factor in medical 

diagnosis is the necessity to be able to explain how a diagnosis was reached. Therefore, 

another system was used to obtain transparent explanations of the decisions. The SMLP 

network presented in chapter 3.2 aims at joining these two abilities (high accuracy and clear 

explanation).  

 

 

3.1.4.1. GEX and GenPar 

 
Methods called GEX and Genoa were proposed in [Markowska 2002] and 

[Markowska 2004]. An MLP network is used to predict the class of a given data instance. 

Then the genetic algorithm-based rule extraction module generates rule not for the original 

class of the actual instance but for the class predicted by the neural network. The advantage 

of that approach is that the neural network clears the data from noise, thus the rules can be 

more accurate and comprehensive. At the beginning the chromosome is decoded to a rule set. 

Afterwards the training patterns are applied to the rule set and the neural network. Each 

individual is evaluated on the base of accuracy (number of misclassified examples) and 

comprehensibility (number of rules and premises). Then the algorithm searches for the best 

individuals and calculates the global adaptation value for each of them. In the last step 

individuals are drawn to the reproduction and finally by applying genetic operators the new 

population is produced. This method follows the key idea of the TREPAN algorithm, using 

instead of decision trees logical rules optimized with genetic algorithms.  

 

 

3.1.4.2. C4.5 Rule-PANE Algorithm 

 

C4.5 Rule-PANE [Pennigton 2003] is a rule-based machine learning technique that 

employs a neural network as a pre-process in the organization of a rule set. This technique is 

believed to provide the strong generalization capability inherent in neural networks, along 

with the obvious comprehensibility of a rule set. The training dataset is used to generate a 

neural network ensemble using bagging or boosting. Thus, each network in the ensemble is 

trained on a slightly different dataset. (Boosting instead of just drawing a succession of 

independent samples from the original dataset as in the bagging approach, maintains a weight 

for each instance. As the boosting process progresses, higher weights are given to the data 

instances that have not been successfully classified by previous networks generated for the 

ensemble. The higher the weight, the more influence the data item has on the learning process 
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of the current neural network. In AdaBoost.M1 [Freund 1997] the network error given by the 

instance is multiplied by its weights. The other alternative is to increase the number of that 

instance samples in the original dataset proportionally to the sample weight. Still another 

technique is multiple boosting [Zhengz 1998] that uses ensemble of ensembles to obtain 

results more accurate than through bagging and more stable than through boosting.) The data 

items are then passed through the neural networks one last time and the new dataset is created 

using the classes assigned to the instances by the network ensemble. An additional dataset is 

then created by randomly generating further data items. The union of the two datasets is used 

as the training data for C4.5 Rule.  

 

 

 

3.1.5. Other Algorithms Used in Comparison of Experimental Results  

 

Besides some of the algorithms presented above the following classification and/or 

rule extraction algorithms are used in comparisons of the experimental results in chapter 

3.2.12:  

  

 LVQ (Learning Vectors Quantizers) [Kohonen 1990] is a supervised classification 

system based on the nearest-neighbor rule, in which a dramatic gain in computational speed 

can be obtained by reducing the number of vectors that represent each class by clustering. A 

set of reference vectors, also called codebook vectors, is obtained through an iterative process 

according to the competitive learning rule (only the closest vector, called winning, moves 

toward the presented data at each iteration). 

 

SOM (Self-Organizing Map) [Kohonen 1984][Naud 2001] is a particular type of 

neural networks that combines multivariate data visualization and clustering capabilities. The 

output layer of neurons is a two-dimensional array (map) that is directly used for data 

visualization. The learning process is unsupervised and self-organized. It is similar to the 

LVQ algorithm, but while in LVQ each unit is updated independently, in SOM the winning 

unit interacts with its neighbor, which are also moved toward the data, the more the closer 

they are to the winning unit. 

 

AQ15 [Michalski 1995] is a rule induction system that searches for the sets of rules in 

the discrete feature space. It generates rules describing a single class, using training vectors 

from that class as positive and others as negative examples. For multi-class problems, it is 

enough to repeat the algorithm for each class. 

 

CN2 [Clark 1989] is a rule induction system, that modifies the basic AQ algorithm in 

such a way that it is able to deal with noise and other complications in the data. CN2 does not 

automatically remove from its consideration a candidate that includes some negative 

examples. Rather it retains a set of complexes in its search that cover large number of 

examples of a given class and few of other classes. At each step it either adds a new 

conjunctive term or removes a disjunctive one. Having found a good complex, CN2 removes 

those examples it covers from the training set and adds the rule “if <complex> then predict 

<class>” to the end of the rule list. The process terminates for each given class when no more 

acceptable complexes can be found. 
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ITRULE [Goodman 1989] is a rule induction system, which uses a maximum entropy 

estimator to rank the hypotheses during decision rule construction. It produces rules in the 

form: “if <all conditions> then <class> with probability 1”. 

 

LERS (LERning from exampleS) [Grzymała-Busse 1999] is based on rough sets and 

uses discrete features. LERS searches for a minimal length description for each class 

represented in the training set. It generates two sets of rules: certain and possible, respectively 

for the lower and upper approximation of the set. 

 

1R [Holte 1993] is a decision tree based on single attribute. It allows for discovering 

simple correlations between features and classes, however in tests it is usually not so accurate 

as more complex classification algorithms. 

 

AC
2
 [Statlog 1994] is not a single algorithm, but rather an expert system, which 

allows the user to build graphically a decision tree by placing a considerable emphasis on the 

dialog between the system and the user. 

 

Bayes Tree  [Buntine 1993] is a Bayesian approach to decision trees. It is based on a 

full Bayesian approach: as such it requires the specification of prior class probabilities 

(usually based on empirical class proportions), and a probability model for the decision tree. 

 

CAL5  [Müller 1997] is a decision tree especially designed for continuous and 

ordered discrete attributes, though an added sub-algorithm is able to handle unordered 

discrete attributes as well. CAL5 separates the examples from n dimensions into areas 

represented by subsets of samples, where the class exists with a probability greatest than a 

given decision threshold. Similar to other decision tree methods, only class areas bounded by 

hyperplanes parallel to the axes of the feature space are possible. 

 

CASTLE (CAsual STructures from inductive LEarning) [Acid 1991] is a program 

that implements casual (Bayesian) networks.  

 

DIPOL92 [Statlog 1994] is a learning algorithm, which constructs an optimized 

piecewise linear classifier by a two-step procedure. In the first step the positions of the 

discriminating hyperplanes are determined by pairwise linear regression. Then to optimize 

these positions in relations to misclassified patterns an error criterion function is minimized 

by a gradient descent procedure for each hyperplane separately. 

 

FACT (Fast Algorithm for Classification Trees) [Loh 1988] uses statistics based on 

some assumptions about the probability distribution. It divides continuous features and 

discrete features are converted to continuous ones with special methods. 

 

QUEST (Quick, Unbiased, Efficient, Statistical Tree) [Loh 1997] is the more 

complex version of the FACT algorithm.  

 

FDA (Fisher’s Discriminant Analysis) [Fisher 1936] uses hyperplanes in n-

dimensional feature space to separate the known classes as well as possible by optimizing a 

quadratic cost function. Vectors are classified according to the side of the hyperplane they 

fall on. 
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LDA (Linear Discriminant Analysis) [Schalkoff 1992] searches for a hypersurface 

that separates vectors that belong to two different classes and keeps the maximal distance 

from both classes.  

 

LogDA  (Logistic Linear Discriminant Analysis) [Statlog 1994] operates by choosing 

a hyperplane to separate two classes as well as possible, where the criterion for a good 

separation is maximization of the conditional likehood. However, in practice, there is often 

very little difference between LDA and logDA, and the linear discriminants provide good 

starting point for the logistic ones that computationally are much more expensive. 

 

NewID is a decision tree algorithm similar to C4.5. It performs probabilistic 

classification, but unlike C4.5 NewID does not perform windowing  [Statlog 1994]. 

 

OC1 (Oblique Classifier) [Murthy 1997] searches for decision trees using hill 

climbing and uses a combination of heuristic and non-deterministic methods to find the linear 

combinations of features in the tree nodes. 

 

PVM (Predictive Value Maximization) [Weiss 1990] performs a full search in the 

solution space. It is very efficient for small datasets, however for large datasets it may run 

into combinatorial explosion problems. 

 

QDA (Quadratic Discriminant Analysis) [Statlog 1994]. Quadratic discrimination is 

similar to linear discrimination, but the boundary between two discrimination regions is now 

allowed to be a quadratic surface. 

 

kNN (k-Nearest Neighbors) assigns a given vector to that class to which most of the k 

nearest vectors belongs, using a given distance measure. 

 

LMDT (Linear Machine Decision Tree) [Brodley 1992] uses at each node linear 

discriminants and tries to reject the least important features.  

 

IncNET (Incremental Network) [Jankowski 1999] is an ontogenic neural network, 

built upon the RBF architecture, which can contract and expand in the learning process 

optimally adjusting its size to the data structure. 

 

MML (Minimum Message Length) [Cichosz 2000] is a decision tree algorithm, 

which searches for the rules in the form that requires the fewest bits, based on entropy 

measure. 

 

FOIL (First Order Inductive Learning) [Cichosz 2000] is an algorithm, which uses 

sequential covering in searches for the rules that are no longer than required to describe the 

area covered by instances. Rules of the First Order Logic are more general than prepositional 

rules.   

 

Naive Bayes classifier [Duda 2001] assumes that all features are conditionally 

independent and instead of the n-dimensional probability density function, the problem is 

reduced to estimation of n one-dimensional probability density functions. 
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SVM (support vector machines) [Vapnik 1995] searches for a hypersurface that 

separates vectors that belong to two different classes and keeps the maximal distance from 

both classes. Contrary to LDA, it separates not the original vectors but their projections in a 

new space. 

 

SMART is a statistical classification and regression method, ALLOC80  [Hermans 

1982] is a discriminant analysis, ASI and ASR and LFC (look-ahead feature constructor) 

[Ster 1996] are decision trees and RBF is a Radial Basis Function network [Hen 2002] .  

 

Many of the methods were used in Statlog, a large-scale European project aimed at 

comparison of various statistical, neural and machine learning systems for classification 

problems [Statlog 1994], where their more detailed descriptions can be found.  
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3.2. SMLP 
 

 

 

3.2.1. Introduction 
 

A good strategy in data mining is to extract simplest crisp logical rules first. They 

provide hyperrectangular decision borders in the feature space. This approximation may not 

be sufficient if complex decision borders are required, but it works quite well if the problem 

has an inherent logical structure. For many datasets crisp logical rules proved to be highly 

accurate, they are easy to understand by experts in a given domain, and they may expose 

problems with the data itself [Duch 2001].  

 

The approach to classification and extraction of logical rules proposed here is based 

on the initial framework presented in [Duch 1999c]. The acronym of this approach, SMLP, 

may be interpreted as either “search-based MLP” or “simplified MLP”. The advantages of 

MLP neural networks are combined with rule based systems, allowing for extraction of 

simple logical rules. Instead of the gradient-based methods that run into problems for 

discontinuous, step-like transfer functions, the training algorithm is based on search methods 

[Kordos 2003a, 2004b]. It leads to simplified network structures, with few connections 

between the hidden and output layer. Various SMLP architectures, training, and rule 

extraction algorithms are considered. Several sets of rules of similar accuracy can be 

generated, offering different advantages to domain experts.  

 

 

 

3.2.2.  SMLP Network Structure  
 

 SMLP network uses the same architecture as MLP2LN (or C-MLP2LN) network 

[Adamczak 2001] (chapter 3.1.2.10). However the networks use quite different training 

algorithms. MLP2LN uses backpropagation with variable sigmoid slopes and two adjustable 

regularization coefficients. SMLP can use two training algorithms: Direct Search (SMLP-DS) 

and Variable Step Search (SMLP-VSS). The algorithms change one weight at a time, or, if 

needed, SMLP-DS changes two weights at a time only in fragments of the network. SMLP-

DS allows for building more diverse sets of rules (chapter 3.2.9) and if the network structure 

is fixed during the training, it can be frequently trained in only one training cycle, what 

together with the use of signal tables (chapter 2.3.2) and the step transfer functions allows for 

very fast training. With SMLP-VSS our control over the form of the extracted rules is not so 

full as in the case of SMLP-DS, but it is usually easier to apply SMLP-VSS for complex 

datasets.  

   

The basic version of SMLP network is based on a 3-layer MLP architecture. Neurons 

implement sigmoidal or step output functions with scalar product activation (see chapter 3.2.6 

for comparison). The network requires discrete input data. If the data is continuous, it must be 

discretized prior to the training or at the run-time by an additional network layer. 

 

A separate input neuron is used for each discretized feature value. Thus, the number 

of all input neurons equals the sum of all distinct values for all features. The network input 

value is 1 if the feature has the value represented by a given neuron and 0 otherwise.  
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One hidden neuron per class is initially created. The second hidden neuron per class is 

added, if the results with only one neuron are not satisfactory (the indices of the neurons in 

Fig. 3.1. indicate the order in which the neurons were added to the network). Weights of 

neurons that have already been trained are frozen, minimizing calculation time and leading 

frequently to better results, since it corresponds to incremental learning, decomposing the 

task into learning general rules first and than exceptions to these rules instead of trying to 

modify all rules to fit the data. If the results are still unsatisfactory then the next hidden 

neuron is added. The number of hidden neurons per a given class should equal the number of 

the data clusters within this class, which cannot be joined together without decreasing the 

classification accuracy. Each such cluster is then represented by one disjoined rule generated 

by the neuron. The hidden layer performs M-of-N logic operation, which frequently can be 

reduced to the AND or OR operations. 
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Fig. 3.1. SMLP network with a discrete feature FD1 and some pre-processing L-units for the 

continuous feature FC1.  

 

 

There is one output neuron per class that combines the partial rules produced by 

hidden neurons for a given class (OR operation). The biases and weights of output neurons 

are constant (bias = 0.5, weights = 1). 

 

The SMLP network diagram is shown in Fig. 3.1. Each value of a discrete feature 

(FD1.value1, FD2.value2) is given to a different input neuron. Continuous features (FC1) are 

discretized by logical units (L-units). There are two L-units in Fig 3.1. The first one consists 
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of neurons N0, N1a, N2a, N3a, and the second one of neurons N0, N1b, N2b, N3b. Signals 

from L-units are given to the input neurons. The L-units are discussed in chapter 3.2.8.2. 

 

 

 

3.2.3. SMLP-DS Training Algorithms 

 
 Three SMLP-DS training methods are discussed: changing one weight at a time, 

changing two weights at a time and changing one weight at a time with a search strategy 

based on the beam search. In SMLP-DS training, the error is expressed by the standard MSE 

function (equation 1.3). 

 

Only weights and biases of the hidden neurons are optimized. The weights can take 

only –1, 0 and +1 values if step transfer functions are used, and any integer values with 

sigmoidal transfer functions. The biases can take the values 0.5, 1.5, 2.5,…. up to the number 

of features minus 0.5. At the beginning of the training all hidden neuron weights have the 

value of zero and biases of 0.5. This gives no signals from the hidden to output neurons and 

consequently all output neuron signals are zero. Thus, at the starting point no vectors are 

assigned to any class.  

 

When the training starts, the value of 1 is added to or subtracted from a single weight. 

If the network error decreases after the change more than the predefined threshold t (chapter 

3.2.9), then the change is kept, otherwise it is rejected. The default setting is that after any 

error decrease the weight change is kept (t=0). Then the value of 1 is added to or subtracted 

from the next weight and again the error is calculated, until the changes of all weights in the 

hidden neuron are examined. In some cases, (e.g. for the Xor problem) changing only one 

parameter at a time may not be sufficient for the algorithm to converge. Thus, modifying two 

or more parameters at a time can be used, though it is more time consuming. Moreover, in 

cases where the strong asymmetry in class distribution occurs, sometimes the training may be 

easier and better results may be achieved using the balanced error function. 

 

Usually one training cycle of the algorithm is sufficient as well with changing one as 

two weights at a time. More training cycles may be required if the threshold value t is being 

gradually changed. 

 

The desired signal of each output neuron is 1 if the actual vector belongs to the class 

represented by this neuron, and 0 otherwise. A vector is considered to be classified correctly 

if the signal of the output neuron corresponding to its class is higher than signals from all 

other output neurons and higher than 0.5. In the case of step transfer functions, the output 

signals can be obviously only 0 and 1.  

  

While determining each weight change, the error should be calculated on the whole 

training set. The reason for this is that in SMLP network the proper value of a given weight is 

determined in a single step. If the properties of the actually used training subset differ too 

much from the entire training set properties, then a wrong decision about the weight value 

may be taken. The problem is significantly easier in standard MLP networks, when the 

weight values are determined in many steps and therefore the semi-batch or even on-line 

training works well. 

 

 



 135 

START

NE+t<OE

w(i)=0, for i=1,...,n

bias=0.5, i=1, pw=0, OE=NE

OE=NE

N

Y

Y
NE+t<OE

w(i)=-1

w(i)=1

w(i)=0

N

i=n

pw=1

STOP

N

i=i+1

Y

f(i)<>f(i-1)

& pw=1

bias=bias+x

pw=0

Y

N

 
 

Fig. 3.2. One training cycle of SMLP-DS algorithm with changing one weight at a time. 

 

 

Explanation of symbols used in Figs 3.2 and 3.3: 

 

n – number of weights in the hidden neuron 

i,j – the actually modified weight 

w(i) – the i-th weight 

NE – New Error, after the weight w(i) is changed 

OE – Old Error, the lowest error value obtained (with the accepted weight change) as so far 

in the training  

t – threshold, a given weight change is accepted if it decreases the error at least by t 

f(i) – feature connected to the network with the weight w(i) 

x – after at least one weight in the last group of weights connecting values of the same feature 

f(i) to the network is set to +1,  pw is set to 1 and the bias can be left unchanged (x=0) or can 

be incremented (x=1),  (chapter 3.2.9.2). When two weights are modified at a time, then x can 

be 0, 1 or 2 
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Fig. 3.3. One training cycle of SMLP-DS algorithm with changing two weights at a time. 

 

 

While changing two weights at a time, there is no need to examine all possible 

combinations of the weight values (-1,0,+1), since all combinations with 0 on any position 

have already been tested while changing one weight at a time. Only the weight combination 

(+1,+1) is checked with bias=1.5. The weight combinations (-1,+1) and (+1,-1) can be 

checked only with bias=0.5 (assuming that other weight values are zero). However the lack of 

one feature value is equivalent to the presence of some other values and therefore it is usually 

enough to check the (+1,+1) weight combination. The influence of negative weights (-1,-1) 

can be easily examined in the “negative logic”, when by default all data is assigned to a given 

class and only the exceptions must be found. That can be sometimes simpler. Also these two 

approaches can be combined in one SMLP network. However, in the majority of cases the 

positive logic is easier to use and better reflects natural human reasoning.   

 

While changing one weight at a time, C1 operations are required to examine all the 

possible weight changes (-1 and +1) for all N weights of the hidden neuron: 

 

 C1=2N (3.12) 
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 The cost of changing two weights at a time is significantly higher. While changing 

two weights at a time, only the weight combination (+1,+1) is checked. Thus, only  

 

 C2=0.5·α·N·(N-1), where α≈((f-1)/f)
2
 (3.13) 

 

operations are required, where f is the number of features and α is a factor depending on the 

number of features and their values. α expresses the fact that we do not try to change 

simultaneously two weights of the same feature. If we assume, that different features have 

similar number of possible values, then approximately 
 
α≈((f-1)/f)

2
.  

 

Also a search strategy based on the beam search can be used. Beam search is a 

method based on the breadth first search (chapter 2.2) and thus the method based on beam 

search usually allows for obtaining very short rules without the need to search through the 

entire solution space. The search strategy in this method is shown in Fig. 3.4. The rules 

obtained with this method frequently do not have higher accuracy on the training set than 

rules obtained with other SMLP-DS training algorithms. Instead, they can have the simplest 

form with a given accuracy. That in turn allows for achieving the highest accuracy on the test 

set. The method can be used either at the weight level or at the feature level. Therefore, each 

node in Fig. 3.4. can represent as well a single weight as a single feature (a group of weights 

corresponding to all the values of a given feature that are determined using the simplest 

SMLP-DS method with changing one weight at a time). Each weight (or feature) can be a 

“parent node” or “child node” to each other weight (or feature). For that reason particular 

nodes can be visited several times during the network training. 
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Fig. 3.4. A search strategy based on the beam search method with beam width B=2. The 

solution contains nodes number 1, 3 and 5. Each node can represent either a network weight 

or a feature, depending on the approach used.  

 

 

  

The total number of possible rules CT using R out of N nodes is given be the following 

equation: 
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The number of times a combination of nodes is calculated by the method based on the beam 

search CBS is given by the following equation: 

 

 
 
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R

r

B

b

BS rbNNC
0 1

)(  (3.15) 

 

where B is the beam width. Let N  be 100, R be 5 and B be 5 then CT=7.5∙10
7
 and CBS=2∙10

3
. 

Let N be 100, R be 13 and B be 13 then CT=7.5∙10
13

 and CBS=1.5∙10
4
. Thus, although this 

method requires much search, it is still a small fraction of the entire search space. 

 

A good method to increase training speed is to use the signal table that has identical 

construction and functionality as the signal table used with NG and VSS (chapter 2.3.2). The 

effectiveness of the signal table used with SMLP is even higher than with NG and VSS, 

especially when step transfer functions are used. There are two reasons for that: first, only a 

single layer of weights is optimized and second, the SMLP networks operating on discretized 

features have more inputs than the standard MLP network (one input per each feature value, 

versus one input per feature in the standard MLP network), and the effectiveness of the signal 

table grows with the number of weights. 

 

 

Table 3.1. Number of operations with and without a signal table required for one training 

cycle of SMLP-DS with changing one weight at a time. Ni, Nh, No – number of input, hidden 

and output neurons respectively. 
 

type of operation 

without signal table 

with signal table training the entire 

 network at once 

training the network  

neuron by neuron 

adding incoming signals 2[Nh(Ni+1)]
2
 + Nh

2
 2Nh(Ni+1)

2
 2Nh(Ni+1) 

calculating neuron signals 2Nh(Nh+No)(Ni+1) 2Nh(Ni+1) 2Nh(Ni+1) 

total number of operations 
2{[Nh(Ni+1)]

2
 +Nh

2 

+Nh(Nh+No)(Ni+1)} 
2Nh[Ni

2
+3Ni+2] 4Nh(Ni+1) 

 

 

Table 3.2. Number of operations with and without a signal table required for one training 

cycle of SMLP-DS with changing one weight at a time for the network structure 125-8-2 

(Ni=125, Nh=8, No=2). 
 

type of operation 

without signal table 

with signal table training the entire 

 network at once 

training the network  

neuron by neuron 

adding incoming signals 2032192 254016 2016 

calculating neuron signals 20160 2016 2016 

total number of operations 2052352  (100%) 256032  (12.5%) 4032  (0.20%) 

 

With step transfer functions, we can assume that adding one incoming signal requires 

the same calculation time as calculating one neuron signal and therefore the operations in 

Table 3.1 and 3.2 are summed together. The values in Table 3.1 and 3.2 are given for one 

training vector with step transfer functions used by SMLP-DS algorithm. If the weights are 

determined using more vectors in the training set, and usually they are, the values must be 

multiplied by the number of training vectors. SMLP-VSS algorithm uses sigmoidal transfer 
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functions and in this case the efficiency of signal tables decreases about 8-25% (greater 

decrease for smaller networks).  

 

Several other aspects of SMLP-DS with changing one or two weights at a time will be 

successively discussed in later chapters. 

  

 

 

 3.2.4. Rule Extraction  
 

Rules are extracted after the network is trained. Therefore, the rule extraction process 

is exactly the same for SMLP networks trained with SMLP-DS and with SMLP-VSS 

algorithm. 

 

If a given value occurs in any vector, than it is always represented by the input signal, 

which equals one. For all values, which do not exist in a given vector, the incoming signals 

are zero. If a presence of a given value contributes to a given class (odor=A,L,N), the hidden 

neuron weight will be positive. If the absence (color=R) - then the weight will be negative. If 

the value is irrelevant to this class (color=B, odor=F) then the weight should be zero. 
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Fig. 3.5. Rules produced by hidden neurons.  

 

 

 In general, the hidden neurons generate M-of-N rules (if M assumptions out of N are 

satisfied then the condition is true). If the sum of all N inputs of a hidden neuron exceeds its 

bias, which has the value of M-0.5, then a logical rule is generated. Either the M-of-N rules 

or the AND/OR rules may describe a given problem more adequately and may be preferred in 

a given situation. When at least one of the N assumptions must be satisfied then the M-of-N 

operation can be reduced to an OR operation. When all N assumptions must be satisfied then 

the M-of-N operation can be reduced to an AND operation. However, in practice it cannot be 

done without considering the meaning of particular weights. An example is shown in Fig. 3.5. 

The rule generated by the network is: 
 

if (odor=A or odor=L or odor=N) and (not color=R) then edible 
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The rule is represented by the three neurons in Fig. 3.5-right. When the sum of the 

signals incoming to neuron D (we assume that all neurons have step transfer functions) 

exceeds its bias, then the rule is satisfied. However, a single feature can take only one value 

for a given vector (for example odor cannot simultaneously take the value A and L) and 

therefore neuron B generates the OR rule. One can imagine that every time when several 

values of the same feature are connected to one hidden neuron, first the values are grouped    

together in the “OR” neurons (B, C), that are connected to the hidden neuron (D) only via 

single weights. The left side of Fig. 3.5. shows a diagram in which the network of neurons B, 

C, D is represented by a single neuron A. The simplified diagram is in fact implemented in 

the SMLP network. The simplified version can be used because only one value of a given 

feature can occur simultaneously. Values within one feature are first joined with OR 

operations and then the resultant feature values with M-of-N operations (which we try to 

reduce to OR or AND operations whenever it simplifies the rules). 

 

The output layer performs always OR operations, combining rule conditions into final 

rules. This structure leads to very straightforward and comprehensive crisp logical rules that 

are extracted from the data by the analysis of the weights in the trained network, as shown in 

Fig. 3.6. using the Xor example. 
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Fig. 3.6. SMLP network trained on the Xor problem. 
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Partial rules given by the hidden layer: 

 

N[1,0]:   if  x=0 and y=0 then class 0          

N[1,2]:   if  x=1 and y=1 then class 0   

N[1,1]:   if  x=0 and y=1 then class 1          

N[1,3]:   if  x=1 and y=0 then class 1    

 

 

Final rules given by the output layer: 

 

N[2,0]:  if N[1,0] or N[1,2] then class 0  <=>  if  (x=0 and y=0) or (x=1 and y=1) then class 0     

N[2,1]:  if N[1,1] or N[1,3] then class 1  <=>  if  (x=0 and y=1) or (x=1 and y=0) then class 1    

 

 All zero weights in Fig. 3.6 could also take the value of –1, which in this case results 

in exactly the same rules. 

 

The biases of output neurons can be either -0.5 or +0.5. If the output neuron bias is 

0.5, then without any incoming signals, the signal of the neuron equals zero. Thus, no data is 

by default assigned to the class represented by the neuron. In this situation, the rules tend to 

be built mostly in the positive form, because some conditions must occur to activate the 

neuron. This configuration will be typically used in SMLP networks. However, if the output 

neuron bias is -0.5, then without any incoming signals, the signal of the neuron equals one. 

Thus, all data is by default assigned to the class represented by this neuron. In such a 

situation, the rules tend to be built mostly in the negative form, because some conditions must 

not occur to deactivate the neuron. 

  

Examples of rules extracted from the discretized (chapter 3.2.8) Iris dataset:  

 

Rules obtained with output neuron biases = 0.5: 

if   petal-length<2.5 then Iris-Setosa 

if   2.5<petal-length<4.9 and not 1.7<petal-width then Iris-Virginica  

if   4.9<petal-length and 1.7<petal-width then Iris-Versicolor  

 

Rules obtained with output neuron biases = -0.5: 

if   not petal-length>2.5 and not petal-length>4.9 then Iris-Setosa 

if   not petal-length<2.5 and not petal-length>4.9 and not petal-width>1.7 then Iris-Virginica  

if   not petal-length<2.5 and not 2.5<petal-length<4.9 and petal-width>1.7 then Iris-

Versicolor 

 

Both sets of rules classify correctly 98% of instances. To simplify the set of rules, the 

rules for one of the classes can be given by “else”.  

 

Positive conditions lead usually to simpler rules, therefore the search strategy should 

be arranged in such a way that negative weights in output neurons do not occur frequently.  
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Table 3.3. Number and accuracy of rules for the Iris dataset obtained with various rule 

extraction algorithms. 
 

method number of 

rules/prepositions/features 

accuracy source 

FuNN 9/26/4 95.7 [Kasabov 1996] 

FuNN 14/28/4 95.7 [Kasabov 1996] 

NefClass 7/28/4 96.7 [Nauck 1996] 

NefClass 3/2/6 96.7 [Nauck 1996] 

FuNe-I 7/-/3 96.0 [Halgamuge 1994] 

C-MLP2LN 2/2/2 96.0 [UMK-KMK]  

C-MLP2LN 2/3/2 98.0 [UMK-KMK]  

SSV 2/3/2 98.0 [UMK-KMK]  

SMLP 2/2/1 95.7 this work 

SMLP 2/3/2 98.0 this work 

 

 

 

3.2.5.   SMLP-VSS Training Algorithm 

 
 Sigmoidal transfer functions allow the network to use continuous error measures and 

therefore eliminate the need for more complex search techniques (chapter 3.2.9 and 3.2.10). 

The SMLP network can be modified so that it could use sigmoidal transfer functions and 

VSS as the training algorithm. VSS (Variable Step Search Algorithm) was introduced and 

described in detail in chapter 2.4.2 as a training method for standard MLP networks. VSS can 

be easily adapted to SMLP networks training by modifying the default parameters to adjust 

them to smaller weight values. The values presented in table 3.4. were empirically 

determined on several datasets including those presented in chapter 3.2.12. 

 

 

Table 3.4. Default VSS parameters with sigmoid slope=1 for standard MLP and SMLP 

networks (see chapter 2.4.2 for the parameters explanation).  
 

parameter 
default values for 

standard MLP 

default values for 

SMLP network 

d0 0.2 0.1 

d1 0.03 0.01 

c1 0.33 0.22 

c2 2.0 1.5 

max_n 4 4 

c3 0.3 0 

max_w - 1.5 

 

 

The SMLP network trained with VSS algorithm uses sigmoidal transfer functions as 

well in the hidden as in output layer. At the beginning there is only one hidden neuron per 

class, more hidden neurons will be added if it is required. Only the weights of the hidden 

layer are optimized. At the beginning all the weights have the same values as at the beginning 

of SMLP-DS training. The weights of the hidden neurons are zero and biases are 0.5, the first 

weight of the output neuron is +1 and its bias is +0.5. If the further hidden neurons are added, 
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the weights connecting them to the output neurons will be either +1 (to classify the 

unclassified actual class vectors) or –1 (to classify the exceptions, i.e. vectors from other 

classes that were wrongly classified by the first hidden neuron as the actual class instances). 

 

The standard MSE function is used, however with an additional penalty term to 

enforce all the weights w of the hidden neurons to take the values –1, 0 or +1. 
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where c is a constant, usually c=0.02÷0.08·Nv/Nw is an optimal value (Nv is the number of 

training vectors Nw is the number of weights of the hidden neuron). The VSS algorithm starts 

with the first guess of every weight change dw=0.1 and then it runs according to the diagram 

shown in Fig. 2.22. At the beginning all the weights are in the basin of attraction w=0 of the 

penalty term. If changing a given weight does not decrease the error than the weight stays at 

zero. The constant c can be used to regularize the complexity of the rules. With greater c 

fewer weights leave the zero basin of attraction. Changing the weights value above +1 or 

below -1 does not cause such significant error reduction as changing it from zero to one, first 

because the regularization term is stronger in these areas and second, because the sigmoid is 

not so steep as it is close to zero. In practice, the weights very rarely leave the +1 or –1 basin 

of attraction.  

 

The regularization term is not added to the bias. This ensures that the bias can freely 

take an optimal value. Only in the last training cycle (for many datasets four training cycles 

are sufficient) a regularization term, similar to that added to weights, is added to the bias to 

enforce it to move to the nearest  n-0.5 value, where n is any integer from one to the number 

of features. 

 

After the last training cycle the weights have usually the values –1±0.05, 0±0.05 and 

+1±0.05 and bias has the value n-0.5±0.05. Then the weights are transformed in the following 

way 

 

if  w<-0.5 then w=-1  (3.17) 

if  w>0.5 then w=+1 

else w=0 

 

if  n-1<bias<=n then bias=n-0.5,  for n=1 to number of  features 

 

While using the network on the test set, either the original sigmoidal neural transfer 

functions can be used, or the sigmoid slopes can be increased, or the transfer functions can be 

transposed to step functions thus converting the network to the SMLP-DS form. It can be 

sometimes observed that after changing the transfer functions from sigmoids to step-like, the 

number of misclassified vectors slightly changes. There is no clear rule if leaving the 

sigmoidal transfer functions leads to better generalization on the test set. Sometimes it is so, 

probably because the decision borders with sigmoidal transfer functions do not have to be 

hyperrectangular and can better fit the data. But on the other hand sometimes just the 

hyperrectangular decision borders may be required. They can also reduce the noise in data. 

The best solution is to perform crossvalidation tests with the actual sigmoid sloped, with the 

increased sigmoid slopes and with the step transfer functions and then to decide which 

functions will lead to the best results. 
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The rules are extracted from the weight values, as discussed in chapter 3.2.4. 

However, if the transfer functions are not transposed to step functions than the rules extracted 

from the network will only approximately fit the mapping that the network performs. (Fuzzy 

rules with sigmoidal membership functions may be more faithful to the original network 

mapping.) 

 

VSS performs better for SMLP networks than gradient-based algorithms for two 

reasons. First, because it does not change all the weights at once, but weight by weight and if 

changing the previous weight already significantly reduces the error, than the next weight is 

not able to leave the zero basin of attraction. Thus, the network and the rules are kept simple. 

The complexity of the rules can be tuned by the regularization constant c. And second, VSS 

uses individual steps for each weight, which allows the weights to take optimal values very 

quickly. 

 

 The possible risk of SMLP training with VSS is that after adding the second neuron, 

its weights may take the same values as the first neuron weights. (In SMLP trained with step 

transfer functions the risk does not exist.) The vectors of the actual class that were correctly 

classified by the first hidden neuron can be removed from further training only in this case, 

when the first neuron did not classify any other classes vectors as the actual class vectors 

(chapter 3.2.9.2). The regularization term in the error function cannot be increased to prevent 

redundant neuron roles, because in this case it would also prevent other weights from leaving 

the zero basin of attraction. Thus, the first term of the error function must be modified in such 

a way that if a given vector is already classified correctly by the first neuron than the correct 

classification of it by the next neuron will not change the error:  

 

 for n=2 to N do (3.18) 

        if Accuracy(v, n-1)=100%  than  Error(v, n)=max(Error(v, n-1), Error(v, n)) 

 

where n is the current hidden neuron, N is the number of hidden neurons per given class, v is 

the vector number, Error(v, n) is the MSE error generated in response to vector v by the 

network with n hidden neurons. This ensures that the next neuron will not perform the same 

functions as the previous one.  

 

 

 

 

3.2.6.   Step Versus Sigmoidal Transfer Functions 
 

In most cases step transfer functions are used with SMLP-DS training. In comparison 

with sigmoidal functions, they produce simpler rules usually of comparable accuracy. Step 

functions give only the information that is necessary to classify a vector. With step functions 

when a vector is classified correctly the error already equals zero and no additional input 

conditions can decrease it, so the conditions do not come into the final rule.  

 

Sigmoidal functions, in addition to the information needed for classification, provide 

also information about other feature values, specific to a given class but not required by the 

classification process. With sigmoidal functions (without weight regularization), adding more 

conditions to a rule may still decrease the network error, since the output signal is always 

lower than 1 and always can be increased. Moreover, the number of additional conditions of 

the rule may be regulated by the required output accuracy, assuming that output values above 
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some threshold (e.g. 0.98) are considered as 1. For example, the rule for one class of the Iris 

dataset obtained using step transfer functions is: 

 

 if petal-length<2.5 then Iris-Setosa 

 

The rule obtained with sigmoidal transfer functions has two conditions: 

 

if  petal-length<2.5 and petal-width<0.8 Iris-Setosa  

 

The second condition is not necessary for classification, but provides additional 

information about the data properties. The network can also be trained using step transfer 

functions to extract logical rules, then the functions can be changed to sigmoids, and an 

additional SMLP-DS training cycle can be run to provide some extra information about the 

data. Moreover, if the dataset is small and has many features a single rule condition may 

work well due to accidental distribution of training data, so it may be better to use additional 

conditions. 

 

The optimal cut-off points determine a hypersurface that separates vectors that belong 

to two different classes and keeps the maximal distance (maximal margin) from both classes. 

The points are in this case about 2.5 for petal-length and about 0.8 for petal-width (Fig. 1.14-

left-top). That ensures the highest test accuracy and stability of the classifier. 

 

 

 

3.2.7. Feature Selection                     

   
In datasets that contain many attributes, usually only some of them provide useful 

information. Using all the attributes for the training of SMLP networks causes two problems. 

First, the training time is unnecessarily long. Second, while changing one or two parameters 

at a time with SMLP-DS, the order in which the weights are examined plays a role. If 

uncontrolled, this effect can adversely influence the training, because the extracted rules 

depend on the training process in an unforeseen way. On the other hand if the order is 

controlled it can provide us with various sets of rules, thus enhancing our knowledge about 

the dataset more than a single best optimized set of rules. However, with many attributes, it 

gets difficult to extract the proper rules. This problem is dealt with using feature selection 

based on the information included either in the single feature, or in a set of features.  

 

 The usefulness of various features for classification purposes can be assessed by 

feature ranking and feature selection. In feature ranking, the predictive abilities (the 

classification accuracy obtained by using only this single feature) of each feature are assessed 

and then the features are decreasingly ordered according to that assessment. Ranking is the 

simplest method, however it does not always work well, because the independent assessment 

of each feature is not always related to the assessment of the group of features. For example, 

the second feature in the ranking may carry practically the same information as the first one. 

Then the space of the two features gives the same classification accuracy as the first feature 

alone. At the same time, a feature that has a further, e.g. fourth, position in the ranking can be 

a useful source of information, efficiently completing the information contained in the first 

feature. Thus, the first and fourth feature may be the best choice and not the first and the 

second one. 
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 Feature selection methods assess various combinations of features, usually using some 

iterative algorithms. Feature selection is computationally more costly than feature ranking but 

can bring better results. Generally, the feature selectors can be divided into filters and 

wrappers. Filters assess the usefulness of particular features independently of the 

classification algorithm that will be used with the selected features. Wrappers cooperate with 

particular classifiers and usually require multiply runs of the classification algorithm. Thus, 

wrappers may be very costly and for that reasons frequently the results obtained with filters 

are more effective. 

 

 To assess the mutual information between the values of a given feature and the class 

of instances, the feature must be discrete. If the feature is continuous, it must be discretized 

(chapter 3.2.8) prior to using the filter.  

 

 Information contained in the joint distribution of classes and features, summed over 

all classes, gives an estimation of an importance of the feature: 
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 (3.19) 

where p(Ci,X=x), i=1...K is the joint probability of finding the feature value X=x for vectors 

X that belong to some class Ck (for discretized continuous features X=x means that the value 

of feature X is in the interval x) and p(X=x) is the probability of finding vectors with the 

feature value X=x, or within the interval xX. Low values I(C,X) indicate that vectors from a 

single class dominate in some intervals, making the feature more valuable for prediction 

[Duch 2003].  

 

 Joint information may also be calculated for each discrete value of X or each interval 

and weighted by the p(X=x) probability: 

 

  
x

xXCIxXpXCWI ),()(),(  (3.20) 

 

Information contained in the p(X=x) probability distribution plus the p(C) class distribution 

minus the joint information I(C,X) is called “mutual information” or “information gain” 

 

 ),()()(),( XCIXICIXCM I   (3.21) 

 

Mutual information is equal to the expected value of the ratio of the joint to the product 

probability distribution, known as Kullback-Leibler divergence: 
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A feature is more important if its mutual information is larger. 
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Several approaches to feature selections can be used with SMLP networks: 

 

 use the information provided by some external filters 

 

 first perform the feature ranking, based on the information contained in a single 

feature and then add the features in the order in which they appear in the ranking  

 

 add gradually features to the rule using a method based on the beam search  

 

 use all the features with the threshold t added to the error function. If including a 

given feature does not decrease the error more than the threshold value, the feature is 

not added at this moment. However, the threshold is being gradually decreased during 

the training, so the feature will have a chance to be included further in more specific 

rules, which cover fewer instances. 

 

 

 

3.2.8. Feature Discretization 
 

There are two objectives while discretizing continuous data: to have a few discrete 

values in order to obtain a simple network and simple rules, and to have enough discrete 

values for accurate rules and reliable classification results.  

 

 

3.2.8.1.  Prior to Training Discretization  

 

There are many discretization methods [Liu 2002], which divide the continuous data 

into intervals basing on various criteria for setting the split points. However, so far only equal 

width and equal frequency discretization was used with SMLP. Then the adjacent intervals 

were merged and the split points of the most important features were fine-tuned. 

  

Initially each continuous feature space is divided into n equal width or equal 

frequency intervals (n=10 is sufficient in most cases). The merging of adjacent intervals can 

be done in two ways: on-line during the training and before the training basing on the idea of 

1R quantization method [Holte 1993]. The on-line method is in general more accurate, 

because it considers also interaction between various features. However, frequently it is 

beneficial to reduce the number of intervals before the training. 

 

Holte avoids large number of intervals by requiring all intervals (except the rightmost) 

to contain more than a predefined number of examples in the same class. Empirical evidence 

led him to a value of six for datasets with more than 50 instances and three for smaller 

datasets. Each interval is assigned to the class to which the majority of its vectors belong. 

Then adjacent intervals assigned to the same class are joined.  
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3.2.8.2.  Run-time L-unit Based Discretization  

 

The initial interval boundaries obtained from the prior-to-training discretization may 

be tuned with L-units (logical units) using search techniques. An interval cut-off point in the 

most significant feature is shifted and the training is performed. If the error decreases then the 

shift was in a proper direction, otherwise it was in the wrong direction. The procedure may be 

repeated with each interval cut-off point for all features. Features that are useless for 

discrimination of a given class (shifting the cut-off points does not influence training results) 

are automatically removed. 

 

Continuous features are given to the inputs of L-units. Each L-unit passes only these 

values, which are within its discretization window, thus as many L-units per feature are 

needed as the required number of that feature discrete values. Since discretization and 

learning are done in the same network, results depend on the whole training set, not just on 

the single feature being discretized.  
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b1

b2
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w13
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FD.v1

 
 

Fig. 3.7. L-unit (neurons N1,N2,N3) with the feature input (N0) and the SMLP network input 

neuron (N[0,x]). 

 

The continuous feature FC given to the neuron N0 (which has linear transfer function 

and is used only to distribute the feature value to further neurons) is connected with weights 

w01 and w02 to the neurons N1 and N2. A single N0 neuron is used by all L-units assigned to 

the same continuous feature. The weights w01 and w02 have constant values set to +1. The 

weights are not modified during the learning process. Neurons N1, N2 and N3 have step 

transfer functions. The output signals of N1 and N2 can take values -1 or 1. The output signal 

of N3 can take values 0 or +1 and it is passed to the corresponding input neuron of the SMLP 

network (neuron N[0,x]). The L-unit realizes the following function: 

 

                   FD.v1=0.5+0.5·sign(w13·sign(FC-b1)+w23·sign(FC-b2)-b3)  (3.23) 

 

Neuron N1 is activated if FC>b1. Neuron N2 is activated if FC>b2. If neurons N1 and 

N2 are activated then their output signal is +1 otherwise it is –1. The biases b1 and b2 are 

modified during network learning to optimally tune the cut-off points. Neuron N3 can realize 

any superposition of the signals from neurons N1 and N2, depending on the weights w13 and 

w23, which can take the values –1 or +1 and on the bias b3 value, as shown in Fig. 3.8. 
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Fig. 3.8. Functions realized by L-units. 

 

 

 

 

 

 

 

 

 

3.2.9. Advanced SMLP-DS Training Methodology  
 

 

3.2.9.1. The Training Algorithm  

 

The SMLP-DS and SMLP-VSS algorithms are the basis of the SMLP training 

process. The SMLP-DS algorithm will be used in the following training methodology: 

 

1. Discretize continuous features. 
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2. Sort features according to feature ranking or feature filter. While building the feature 

ranking it may be required to tune precisely the discretization cut-off points using L-

units. Frequently low-ranking features can be rejected. 

3. Build the network with one hidden neuron for a given class. If the class distribution is 

highly asymmetric or there are more than two classes then it may be required to 

assign appropriate weights to the classification errors made on different class 

instances (to use the balanced accuracy). 

4. Train the neuron changing one weight at a time starting from changing the weights of 

the most important feature in the ranking. Tune precisely the discretization cut-off 

points using L-units if necessary. 

5. If the error does not decrease significantly then change two weights at a time. Tune 

precisely the discretization cut-off points using L-units if necessary. If changing two 

weights at a time does not work (and the network is still far from overfitting), three 

weights can be changed, SMLP-VSS or genetic algorithms used, but it is most likely 

that there is a problem with the consistency and reliability of the dataset itself. 

6. If the error no longer decreases or the number of rule prepositions grows rapidly then 

freeze the weights of this neuron, add the next hidden neuron and repeat points 4 and 

5. If  adding the next neuron does not change the situation then go to point 7. 

7. If there are only two classes, then stop the training; the rules for the second class will 

be given by “else”. If there are three classes, repeat steps 3-6 with the second class, 

the rules for the third class will be given by “else”. If there are more than three 

classes, then repeat steps 3-6 with every class, the “else” rule may be too difficult for 

interpretation in this case. 

 

 

 

3.2.9.2. Sample SMLP Training on the Mushrooms Dataset  

 

The methodology will be discussed on the Mushrooms dataset example. The dataset 

was constructed basing on mushroom records drawn from “The Audubon Society Field 

Guide to North American Mushrooms” by G. H. Lincoff.  This dataset includes descriptions 

of samples corresponding to 23 species of mushrooms. Each species is identified as edible or 

poisonous one. The guide clearly states that there is no simple rule for determining the 

edibility of a mushroom. The dataset contains 8124 vectors, 4208 (51.8%) of them in the first 

“edible” class and 3916 (48.2%) in the second “poisonous” class. The dataset contains the 

following values of the 22 discrete features: 

 
f1: cap-shape (bell=B, conical=C, convex=X, flat=F, knobbed=K, sunken=S) 

f2: cap-surface (fibrous=F, grooves=G, scaly=Y, smooth=S) 

f3: cap-color (brown=N, buff=B, cinnamon=C, gray=G, green=R, pink=P, purple=U, red=E, 

white=W, yellow=Y) 

f4: bruises (bruises=T, no=F) 

f5: odor (almond=A, anise=L, creosote=C, fishy=Y, foul=F, musty=M, none=N, pungent=P, 

spicy=S) 

f6: gill-attachment (attached=A, descending=D, free=F, notched=N) 

f7: gill-spacing (close=C, crowded=W, distant=D) 

f8: gill-size (broad=B, narrow=N) 

f9: gill-color (black=K, brown=N, buff=B, chocolate=H, gray=G, green=R, orange=O, pink=P, 

purple=U, red=E, white=W, yellow=Y) 

f10: stalk-shape (enlarging=E, tapering=T) 

f11: stalk-root (bulbous=B, club=C, cup=U, equal=E, rhizomorphs=Z, rooted=R, missing=?) 
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f12: stalk-surface-above-ring: (fibrous=F, scaly=Y, silky=K, smooth=S) 

f13: stalk-surface-below-ring: (fibrous=F, scaly=Y, silky=K, smooth=S) 

f14: stalk-color-above-ring: (brown=N, buff=B, cinnamon=C, gray=G, orange=O, pink=P, 

red=E, white=W, yellow=Y) 

f15: stalk-color-below-ring: (brown=N, buff=B, cinnamon=B, gray=G, orange=O,   pink=P, 

red=E, white=W, yellow=Y) 

f16: veil-type: (partial=P, universal=U) 

f17: veil-color: (brown=N, orange=O, white=W, yellow=Y) 

f18: ring-number: (none=N, one=O, two=T) 

f19: ring-type: (cobwebby=C, evanescent=E, flaring=F, large=L, none=N, pendant=P, 

sheathing=S, zone=Z) 

f20: spore-print-color: (lack=K, brown=N, buff=B, chocolate=H, green=R, orange=O, 

purple=U, white=W, yellow=Y) 

f21: population: (abundant=A, clustered=C, numerous=N, scattered=S, several=V, solitary=Y) 

f22: habitat: (grasses=G, leaves=L, meadows=M, paths=P, urban=U, waste=W, woods=D) 

 

The features can take together 125 different values. Thus, the SMLP network must 

have 125 inputs. The SMLP network can be trained for each class separately, since specific 

hidden neurons are dedicated to particular classes. The Mushrooms dataset contains two 

classes: edible and poisonous. It this case, it is sufficient to train the network for one class, 

the rules for the other class will be given by the negation of the rules obtained for the trained 

class. The network will be trained for the class poisonous. Examining all features in the order 

in which they appear in the original vectors and changing one weight at a time while training 

the network with one hidden neuron gave the following equation that must be satisfied for the 

poisonous class: 

 

if 0.5 < cap_shape(C) + cap_surface(G) + cap_surface(S) + cap_color(B) - cap_color(G)  

+ cap_color(P) - cap_color(Y) + bruises(F) – odor(A) - odor(L) +odor(C) + odor(F)  

+ odor(M) - odor(N) + odor(P) - gill_attachment(A) + gill_spacing(C) - gill_spacing(W) 

 - gill_color(K) + gill_color(R) - gill_color(O) - gill_color(E) - gill_color(Y) - stalk_root(C) 

 - stalk_root(R) - stalk_surface_above_ring(Y) + stalk_surface_above_ring(K) 

 - stalk_surface_below_ring(K) + stalk_color_above_ring(C) - stalk_color_above_ring(O) 

 - stalk_color_above_ring(E) - stalk_color_below_ring(E) + stalk_color_below_ring(Y)  

+ ring_type(E) - ring_type(F) +  spore_print_color(R) + population(C) - population(N) 

 - population(Y) - habitat(W)  then  poisonous 

 

which gives 99.78% accuracy and classifies 4206 of edible mushrooms as edible, two edible 

as poisonous, 3900 poisonous as poisonous and 16 poisonous as edible. This can be written in 

the confusion matrix (chapter 3.2.12.1) form: 

 

        E          P 

 E   4206      2 

 P     16      3900 

 

The main problem is that it is not easy to draw any conclusions from this rule. We can 

only see which feature values positively contribute to that class (sign +) and which negatively 

(sign -), but it is very difficult to say what condition must exactly be satisfied to obtain the 

sum of incoming signals multiplied by their weights greater than 0.5. Because the rule is so 

complex, it would not be a good idea to add the second neuron to further improve the training 

accuracy (and complicate the rule even more). 
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Weights that belong to the same feature and have the same sign are called “group of 

weights”. If there are many negative and many positive groups of weights and the bias value 

is lower then the number of positive weight groups minus 0.5, as in the rule above, then the 

rule interpretation may be ambiguous. In general, when the bias value is M-0.5, the positive 

weight groups are interpreted as M-of-N rules, where N is the number of groups of positive 

weights. Any negative weight is interpreted as “and not”. Negative weights of some feature 

values can be replaced by the positive weights of other values of the same feature. In order to 

obtain the “and” interpretation, the bias must take a higher value, equal to the number of 

positive weight groups minus 0.5. The desired situation is when the rules can be clearly 

formulated according to the guidance above and frequently it is the case. If they cannot be, 

then either the interpretation “and not” for negative and “M-of-N” for positive weight groups 

should be used or the functionality of the neuron should be split among more neurons (what 

will be discussed later). 

 

In general, the rules should be kept as clear and simple as possible. The simplest rules 

are usually obtained when the search through feature values is ordered according to the 

decreasing mutual information of the features. A good approach is to use some form of 

feature selection. This dataset has 22 attributes and usually if there are so many attributes, 

most of them are useless for classification. It is easiest to assess the information contained in 

each single feature. Training the network on each feature separately gave the accuracies 

shown in Table 3.5. Thus, automatically a very simple rule, which gives 98.52% accuracy, 

was obtained: 

 

if odor=(C or Y or F or M or P or S) then poisonous 

 

with the following confusion matrix: 

 

        E        P 

 E   4208    0 

 P    120    3796 

 

Searching first through values of a single feature is advantageous because it usually 

leads to the simplest and most comprehensive rules. Than the features were sorted according 

to the decreasing information gain and the last 10 features in the ranking were discarded. This 

decision was based on the observation, that in datasets with many features, frequently most of 

the features (the low-ranking ones) are irrelevant for classification. However, in more 

complex cases, rather a feature filter assessing the mutual feature information in connection 

with other features than a simple feature ranking is preferred. If the decision proved wrong in 

a given case then the training would have to be repeated including all the features. 

 

Together with, or alternative to sorting the features, the threshold t can be used to 

keep the rules simple. The threshold is especially useful if the features are not sorted 

according to a feature filter that includes correlations among features and this is the case in 

the actual training, since only a simple feature ranking was used. At the beginning of the 

training, the network has one hidden neuron with the error threshold t being arbitrary set to 

20. 
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Table 3.5. Information contained in single features of the Mushrooms dataset. 
 

feature accuracy 

[%] 

accuracy-default 

[%] 

odor 98.52 46.72 

spore_print_color 86.80 35.00 

gill_color 80.50 28.70 

ring_type 77.54 25.74 

stalk_surface_above_ring 77.45 25.65 

stalk_surface_below_ring 76.61 24.81 

gill_size 75.62 23.82 

bruises 74.40 22.60 

population 72.18 20.38 

stalk_color_above_ring 71.64 19.84 

stalk_color_below_ring 71.44 19.64 

habitat 69.03 17.23 

stalk_root 63.81 12.01 

gill_spacing 61.59 9.79 

cap_surface 59.52 7.72 

cap_color 59.29 7.47 

cap_shape 58.05 6.25 

stalk_shape 55.29 3.49 

ring_number 53.81 2.01 

veil_color 51.89 0.09 

gill_attachment 51.80 0 

veil_type 51.80 0 

 

 

After one epoch of training, changing one weight at a time some weights of the hidden 

neuron took non-zero values and the neuron generated the following rule: 

 

if odor=(C or Y or F or M or P or S) or spore_print_color=R or stalk_color_below_ring=Y 

then poisonous 

 

The rule gives 99.51% accuracy and the following confusion matrix: 

 

        E        P 

 E   4208    0 

 P     24    3892 

 

 The accuracy is a bit lower than previously (99.78%) but the rule is clear. Now we 

must add the second hidden neuron for that class that will classify the vectors that were not 

classified by the first neuron. Thus, the weights of the first neuron will no longer by 

modified. 

 

The vectors of the poisonous class that have already been correctly classified can be 

removed from the further training. That is because hidden neurons work in parallel and these 

vectors have already found their path through the first neuron, which they will use, no matter 

what the weights of the second neuron will be. However, the correctly classified instances of 

the edible class cannot be removed from the further training, because in this case it may 



 154 

happen, that the weights of the second neuron could take such values that would let the edible 

class vectors pass through.  

 

The training of the second neuron starts with bias=0.5 and changes one weight at a 

time. However, since it did not work here, two weights had to be changed at a time. It does 

not necessarily mean that results of similar quality could not be achieved changing only one 

weight at a time, examining the weights in a different order. 

 

After the training, the second neuron generated the following rule: 

 

if 2 of ( gill_size=N,  stalk_surface_above_ring=K, population=C) then poisonous 

 

Although the neuron classifies the data correctly, giving 100% accuracy together with the 

first neuron, it generated the M-of-N (2-of-3) rule instead of the AND rule, as it was 

expected. The rule is equivalent to the following disjunctive normal form rule: 

 

if (gill_size=N and population=C) or (gill_size=N and stalk_surface_above_ring=K) or  

(population=C and stalk_surface_above_ring=K) then poisonous 

 

The rule can be decomposed into a minimal number of AND rules, by performing the training 

in the following way: first all pairs of weights are checked with the weights being set again to 

zero before the next pair is examined. Then the best pair of weights is selected and it gives 

the first AND rule. In this case, the rule is: 

 

if  gill_size=N and stalk_surface_above_ring=K then poisonous 

 

The rule gives 99.90% accuracy and the following confusion matrix: 

 

        E        P 

 E   4208    0 

 P     8      3908 

 

Then the third hidden neuron was added and trained changing two weights at a time. It 

generated the following rule:  

 

if gill_size=N and population=C then poisonous 

 

The rule covered the remaining 8 vectors, achieving 100% accuracy on the training set. That 

means that the third AND rule (population=C and stalk_surface_above_ring=K then 

poisonous) covers either only the instances contained in the other rules or an empty set. 
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Finally the following rules were obtained: 

 

if odor=(C or Y or F or M or P or S) (98.52%) 

or spore_print_color=R or  stalk_color_below_ring=Y (99.41%) 

or (gill_size=N and stalk_surface_above_ring=K) (99.90%) 

or (gill_size=N and population=C) then poisonous (100%) 

else edible  

 

The rules can also be written in the shorter form: 

 

if not odor=(A or L or N) or spore_print_color=R or  or  stalk_color_below_ring=Y  

or  2 of (gill_size=N, stalk_surface_above_ring=K,  population=C) then poisonous else 

edible  (100%) 

 

 

 

poisonous

gill_size=N

1

1

b=1.5

population=C
1

1

b=1.5

odor=F

odor=M

odor=P

odor=S

1
1

1

spore_print_color=R

odor=Y
odor=C

1 1

1
1

stalk_color_below_ring=Y

1 b=0.5

b=0.5
stalk_surf_above_ring=K

gill_size=N

1

1

1

 
 

Fig. 3.9. SMLP network obtained for the poisonous class of the Mushrooms dataset. Only 

non-zero weights are shown. 

 

 

Though the rules could be obtained with two hidden neurons, it seems that with three 

hidden neurons their form is more convenient. When at least four of these rules are used, than 

the third one is redundant, however it may be a compromise between the accuracy of the 

fourth rule and the simplicity of the second one. The redundancy was not detected by the 

training algorithm. It would have been detected, if the threshold t of the first neuron had been 

set to a higher value. Then, the second neuron would have been added earlier and trained 

changing two weights simultaneously. Changing two weights at a time sometimes allows for 

extracting more accurate and simpler rules, but on the other hand, the computational cost of 

such an approach is significantly higher. For datasets with relatively simply structure it is 

usually sufficient to change one weight at a time.  
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Fig. 3.10. SMLP network obtained for the edible class of the Mushrooms dataset. Only non-

zero weights are shown. 

 

 

In the training performed on the Mushrooms dataset, already the first rule was not 

satisfied by any edible mushrooms. But if the first neuron classified also some edible 

mushrooms as poisonous, then the next hidden neuron should be added with a negative 

weight (-1) to the output neuron. Then during the training, the neuron would learn to 

recognize the edible mushrooms misclassified by the first one as poisonous. Thus, the first 

neuron would provide a general rule and the second one an exception from that rule. There 

can be several hidden neurons with –1 weight to the output neuron to classify exceptions, as 

well as several hidden neurons with +1 weight to the output neuron to classify smaller 

clusters of the actual class instances. For example, if the training of the Mushrooms dataset 

starts from the edible class, than the first neuron generates the rule: 

 

if odor=(A or L or N) and (not spore_print_color=R) and (not stalk_color_below_ring=Y) 

then edible 

 

However, the rule covers also 24 poisonous instances. Thus, the second neuron with –

1 weight to the output neuron must be added to generate the rule for the poisonous 

mushrooms and if it does not cover all poisonous mushrooms covered by the first neuron – 

than also the third neuron with –1 weight to the output neuron must be added (Fig. 3.10). 

Thus, the poisonous class vectors will activate the first neuron, but also the second and the 

third neuron. That will result in no activation of the output neuron and thus in correct 

classification. 
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Table 3.6. Number and accuracy of rules for the Mushrooms dataset obtained with various 

rule extraction algorithms. 
 

method number of 

rules/prepositions/features 

accuracy source 

RULENEG 300/8087/- 91.0 [Sestito 1994] 

REAL 155/6603/- 98.0 [Craven 1996b] 

DEDEC 26/26/- 99.8 [Tickle 1994] 

RULEX 1/3/1 98.5 [Andrews 1994] 

Successive Regulariz. 1/4/2 99.4 [Duch 1997b] 

Successive Regulariz. 2/22/4 99.9 [Duch 1997b] 

Successive Regulariz. 3/24/6 100 [Duch 1997b] 

C-MLP2LN, SSV 1/3/1 98.5 [UMK-KMK] 

C-MLP2LN, SSV 2/4/2 99.4 [UMK-KMK] 

C-MLP2LN, SSV 3/7/4 99.9 [UMK-KMK] 

SSV 4/9/5 100 [UMK-KMK] 

C-MLP2LN 4/9/6 100 [UMK-KMK] 

SMLP 1/3/1 98.5 this work 

SMLP 2/4/2 99.4 this work 

SMLP 3/5/3 99.7 this work 

SMLP 3/7/4 99.9 this work 

SMLP 4/12/6 100 this work 

SMLP 4/9/5 100 this work 

SMLP 3/8/5 100 this work 

 

 

 

3.2.10.  Comparison of SMLP and Standard MLP Networks 

 

Let’s assume that the data has two features F1 and F2. The rule can be “class 1 if F1 

and F2”. However, it is likely that in the areas, described by “F1 and not F2” or “not F1 and 

F2” there will be more class 1 instances than in the area described by “not F1 and not F2”. 

Thus, looking at the error surface for this problem there exist a smooth transition, or an 

addition stair, that can be traversed changing only one weight at a time (additionally the bias 

can be incremented form 0.5 to 1.5, but this does not require significant computational 

effort). Changing two weights at a time with SMLP-DS is required if there is no smooth 

transition between two areas in the data and the error does not decrease until both weights are 

changed at once. Theoretically, in n-dimensional data space with no smooth transitions, there 

may be a need to change n weights at once, but the need to change more than two weights has 

not been observed so far on real-world datasets.  

 

In SMLP trained with VSS and in standard MLP networks the problem is solved by 

using a continuous error measure with continuous neural transfer functions. If the training 

moves in the proper direction, then even if the number of correctly classified vectors does not 

actually grow, the error decreases. That allows for an easy training of MLP and SMLP 

networks with VSS algorithms, which changes only one weight at a time. The fully 

discretized SMLP-DS network does not provide this possibility.  
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Table 3.7. Comparison of MLP and SMLP networks.  
 

 MLP SMLP 

decision borders  

of a single neuron 
any hypersurface 

hyperrectangle with sides parallel to 

feature axes 

desicion borders  

of the network 

any hypersurface combination with 

a tendency for edge smoothing 

any combination of hyperrectangles 

with sides parallel to feature axes 

required number  

of hidden neurons 

depending on decision borders, the number can be higher either in MLP 

or in SMLP network  

generalization abilities 
depending on decision borders, either in MLP or in SMLP network  

can generalize better 

information storing 
globally (difficult to say what 

a single weight is responsible for) 

locally (each weight is explicitely 

assigned a specific role) 

rule extraction complex and difficult simple and easy 

constructive algorithm possible embeded in the model 

required number  

of training cycles 
at least several 

one training cycle is frequently 

enough, though more cycles can lead 

to more efficiant rule sets 

weight pruning possible 
unneeded (excessive connections  

are not created) 

 

 

 

The decision borders of SMLP network are hyperrectangular in the discretized search 

space. Nevertheless, they do not have to be hyperrectangular in the original continuous search 

space. For example, a new feature that is the sum or product of the some most important 

continuous features can be created and its value first calculated in the original continuous 

space and then discretized. Pao examined networks with additional inputs (called by him 

functional link nets) [Pao 1989] of several kinds and found that the combination of some 

inputs were frequently very useful. 

 

Another method leading to decision borders, which are not parallel to the feature axes 

in the original continuous space is PCA (Principal Component Analysis). PCA produces new 

features that are weighted sums of the original features and that can be used in the feature 

space in the same way, as PCA directions were used in the MLP weight space (chapter 

1.2.3.2). Additional functional inputs or PCA can make the network training easier and 

generalization better, but on the other hand the rules extracted from such networks may be 

more difficult to understand and to draw conclusions.   

 

The possibility of obtaining the rules enhances the value of a classifier, because the 

user is provided not only with the final decision but also with the explanation how the 

decision was reached. The value of the classifier can be still more enhanced, when additional 

information about the probability of the decision being correct could be provided. In MLP 

networks, the probability of a given vector being assigned to each class can be considered 

proportional to this class output neuron signal (chapter 1.5-1.7).  
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In SMLP networks the output signals are either 0 or 1 and the probability cannot be 

obtained directly. However, some additional information can be provided, such as the 

crossvalidation accuracy for vectors classified by the same rule as the actual test vector, or 

the distance from the test vector to the class boundaries if the original features were 

continuous.  

 

 Theoretically it may happen that changing two weights at a time will not be sufficient 

for SMLP-DS convergence. Then the natural solution is to use SMLP-VSS, nevertheless 

some other training methods can also be considered. Changing three weights at time is very 

costly - O(w
3
), and frequently genetic algorithms (chapter 2.1.2.4) may be able to find the 

solution in fewer steps then changing three weights at a time through all the possible weight 

triples (excluding obviously the same feature weights from a simultaneous change). The 

network weights can be coded into chromosomes and a standard genetic optimization can be 

performed. However, genetic algorithms change all the weights at once, therefore the signal 

table cannot be used. Therefore, genetic algorithms will not necessarily be quicker than 

changing three weights at a time, in spite of fewer steps.  

 

 

 

3.2.11.  SMLP Architecture for Complex Rules  
 

 It is not always the best idea to use the M-of-N or the standard disjunctive normal 

form of rules, since sometimes it may lead to too complex and too long rules. Then a better 

solution maybe to add a single neuron in an additional network layer than many neurons in a 

single hidden layer. This problem may appear if the partial rules generated by particular 

hidden neurons must joined with the AND operator, for example: 

 

(A or B) and (C or D) 

 

The standard SMLP structure cannot perform this operation if (A, B) and (C, D) belong to 

different features, because it has not enough layers. The output layer performs OR operations, 

which cannot be changed to AND operations by changing the bias of the neuron, because this 

would not allow for adding any more partial rules joined with the OR operator. The solution 

is to add locally one neuron in the layer between the hidden and output layer. Theoretically, 

the data could be described by rules that could require n layers of neurons – then this 

approach can be extended to n layers.  

 

The layers perform the following operations: 

Layer[0]    - provide feature values  

Layer[1]    - groups the values of the same feature together  

Layer[2]    - generates partial rules 

Layer[3]    - combines partial rules with AND operation 

Layer[4]    - combines partial rules with OR operation into classes   

 

The standard SMLP-DS and SMLP-VSS procedures can be used to train such a 

network. It is a constructive solution and additional neurons are added only locally as needed.  

 

Some experiments with a version of SMLP network, which changes the number of 

layers dynamically, adjusting its structure to the data, were performed. The network structure 
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is shown in a five-layer layout in Fig. 3.11. The zero layer is derived from the first one, like 

in Fig. 3.5-right, in order to make it clear how the operations are performed. The network has 

initially three layers (Layer 0, 1 and 4), what is sufficient for such data as Iris. As long as one 

hidden neuron is sufficient per given class, the hidden neuron performs the functions of both 

the hidden and output neuron in the standard SMLP network. If proper rules cannot be 

generated within the actual network structure, than Layer[3] with initially two neurons is 

added for the actual class (required for such data as Mushrooms). If proper rules still cannot 

be generated within the actual network structure, even with many hidden neurons, then 

Layer[2] with initially two neurons is added for the actual hidden (Layer[3]) neuron (For 

example, a dataset that requires this layer may describe a student taking an exam. The exam 

consists of 5 questions. In order to pass the exam, the student must answer question A and at 

least two of the remaining four questions. Another choice is to bribe the examiner. Thus, the 

rule will be:  if   ( (A=1)   AND   (2 of (B,C,D,E) = 1) )  OR  (bribe=1)   then  pass) 

 

 

 

 
Layer[0] Layer[1] Layer[2] Layer[3] Layer[4]

F0.v0

F0.v1

F1.v0

F1.v1

F1.v2

F2.v0

F2.v1

F2.v2

F3.v0

F3.v0

class 0

class 1

 
 

 

Fig. 3.11. A generalized SMLP network structure for complex data. 
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3.2.12.   Experimental Results and Rules Extracted from Data 

 
 

3.2.12.1.  Criteria of Classifier Quality 

 
 The first criterion, which assesses the classifier quality, is the classification accuracy. 

Other parameters include the complexity of the algorithm, convergence properties 

(percentage of runs the algorithm converges), stability measured by a change of results when 

small perturbation of vectors located close to decision boundaries occurs, sensitivity, 

specificity, variance of results, comprehensibility of the rules, training times, memory 

requirements and additional information that the classifiers give besides the predicted class 

membership. All the above except for sensitivity and specificity were discussed in various 

chapters of this thesis.  

 

A confusion matrix C is a square matrix that describes the errors made by a classifier. 

Each row i corresponds to a class the instances belong to and each column j to a class the 

instances were classified to. Thus, the element cij indicates the number of instances belonging 

to class Ci that were recognized as instances of class Cj.  An example of a confusion matrix: 

 

 i\j C1 C2 C3 C4 

 C1 100 3 2 3 

 C2 2 80 0 4 

 C3 0 2 60 2 

 C4 0 6 2 70 

 

Sensitivity describes the ability of a classifier F to detect a given class instances in the 

dataset X. Sensitivity Se(Ci,F,X) is a conditional probability of an instance xX being 

classified to class Ci by the classifier F, given that it really belongs to class Ci. and it can be 

obtained from the confusion matrix: 

 

 




j

ij

ii
i

c

c
XFCSe ),,(  (3.24) 

 

Specificity describes the ability of a classifier F to reject the instances from other 

classes. Specificity Sp(Ck,,F,X) is a conditional probability of an instance xX not being 

classified to class Ck by the classifier F, given that it really does not belong to class Ck and it 

can be obtained from the confusion matrix: 
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Fig. 3.12. ROC Curve. 

 

 

The ROC curves (Receiver Operator Characteristic) can be used for the visual 

assessment of the classifier performance and especially for the comparison of several 

classifiers [Mertz 1978]. Each point on the ROC curve corresponds to the mean sensitivity 

and specificity of the classifier for all the classes. The sensitivity (Se) is on the vertical axis 

and 1-specificity (1-Sp) is on the horizontal axis. Bigger the areas under the ROC curve 

indicate higher quality of the classifier. 

 

In cases, where there are different costs of misclassifying different class instances, the 

costs may be defined in the cost matrix Ċ. For example the cost of classifying a poisonous 

mushroom as edible may be higher then the cost of misclassifying an edible mushroom as 

poisonous. An example of a cost matrix: 

 

 i\j Ċ1 Ċ2 Ċ3 Ċ4 

 Ċ1 0 3 2 3 

 Ċ2 2 0 5 4 

 Ċ3 2 2 0 2 

 Ċ4 2 6 2 0 

 

where i is the original class and j is the predicted class. The task in the N-class problem is to 

minimize to total misclassification cost E expressed by sum of products of the appropriate 

entries in the confusion matrix and in the cost matrix: 

 

 
 


N

i

N

j

ijijccE
1 1

  (3.26) 

 

A comparison of all the parameters for so many algorithms would be very difficult, 

especially that such parameters are only rarely available in the literature. Such a detailed 

comparison was even not contained in Statlog, a large-scale European project comparing 

classification algorithms [Statlog 1994], though much additional information can be found 

there.  

 

For the datasets on which the algorithms were compared in the Statlog project, usually 

the longest training times were required by MLPs trained with backpropagation (MLP BP), 
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SOM, ALLOC80, SMART, AC
2
 and cascade correlation networks. As it can be concluded 

from the presented results (and as it is known from the experience with the Ghostminer 

program [Ghostminer], where the incNet network is implemented), the training times of the 

incNet network, which performed well in some cases, are several ranks of orders longer than 

that of VSS, NG and SMLP. FSM performs best when it is used as a committee of networks, 

which makes the complexity of the model higher. PVM performs a complete search through 

the solution space and therefore for bigger dataset it is a very costly method. 

 

In cases where the user must understand decisions of the classifier, the 

comprehensibility of rules can be even a more important factor than a very high accuracy on 

the test set (chapter 3.1.4). 

 

NG and VSS are not self-standing classifiers but only training algorithms for MLP 

networks and must be evaluated together with the underlying architecture, because their 

performance is bound by the limitation of MLP network. NG and VSS should be rather 

compared with other MLP training algorithms, and they have been in chapter 2.4.5. It should 

be also pointed out that the MLP trainings were performed on raw data, where the only 

preprocessing was standardization of continuous features. Many other classifiers used more 

sophisticated data preparation techniques. For example, the classification was frequently 

preceded by feature selection and data discretization, which removed much noise from the 

data and reduced the search space. 

 

 

3.2.12.2.  Testing Procedure  
 

Results obtained with NG, VSS and SMLP are compared to the best classification 

methods that can be found in the literature. The classification algorithms compared here were 

shortly introduced in chapter 3.1. Datasets selected for this comparison have been analyzed 

by many methods and crossvalidation or test accuracies obtained with the methods are 

available in the literature. Only the methods for which the results were available in the 

appropriate form are included in comparison. For example, several authors tested their 

methods on the original dataset divided into a separate training set and test set. In this case, 

the results strongly depend on the method (which was usually not reported) of dividing the 

dataset into the training and test set. Thus, because of different testing conditions the results 

cannot be compared with other methods, where crossvalidation was used and therefore they 

are not included in comparisons. 

 

One should remember that the testing procedure is frequently not performed correctly. 

“The next point is that a real test set is a dataset that the classifier has never seen before. A 

frequent practice is however, to train the classifier on one set and then check its performance 

on another set (called by us “test set”). If the results are not satisfactory, then we change 

something in the algorithm and once again train it one the first set and test it on the second 

set. And so on. By such modifications we adjust the algorithm to the only test set we have. So 

the “test set” is really no longer a test set, but rather the second training set. Then we boast 

that our algorithm achieved 100% accuracy on the test set. In this context, it is rather 

advocated to use crossvalidation. Since with crossvalidation we have 10 different training and 

test sets, moreover they are different at each run of the algorithm, thus the algorithm is less 

prone to adjusting to a given test set.” (Norbert Jankowski at Bioinformatics Workshop, 

Toruń, 03 July 2004).  
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If the data preprocessing is performed on the entire set, the crossvalidation results will 

be overestimated. On the one hand, this would allow assessing the performance on the 

classifier alone, but on the other hand, the classifier will never be used alone in cases, where 

the data must be preprocessed. Thus, in crossvalidation tests, all the preprocessing of data, 

such as normalization, discretization or feature selection should be performed only on the 

training partition of the set. Then the validation partition should be transformed using the 

parameters determined on the training partition. This allows for testing the entire model and 

all the experiments presented in this thesis were conducted in this way. 

 

It seems reasonable that for dataset with unequal class distribution rather the balanced 

accuracy should be maximized. (Also the accuracy given by the misclassification cost matrix 

can be maximized.) However, in the methods available for comparison, always the standard 

accuracy was maximized and reported. Therefore, to ensure the proper comparison with other 

results also the standard accuracy was maximized in my tests. The balanced accuracies 

presented in the tables were calculated using the equation (1.25).   

 

 The rules extracted from SMLP networks were always obtained on the entire training 

set. The accuracy of rules on the training and on the test set (if test set is available) is given. 

Moreover, the stability of rules and accuracy in crossvalidation tests are discussed. The 

accuracies on training dataset (or on the training partition of the dataset for crossvalidation) 

given in the tables for SMLP, NG and VSS are those accuracies that allowed for the highest 

test accuracies (chapter 2.6.1 – Fig. 2.48-right) and not the highest accuracies possible to 

obtain on the training set. It is almost always possible to obtain 100% accuracy on the 

training set (excluding the cases, where two identical vectors belong to different classes), but 

such networks generalize poor and the test accuracy falls down dramatically.  

 

 The 10-fold crossvalidation was run 10 times (together 100 trainings and 100 tests). If 

the test set was used, the training and test was performed only once for SMLP, because 

SMLP is a deterministic method and 10 times for NG and VSS starting from different 

random weights.  

 

The standard deviation of the test accuracy within a single crossvalidation was 

calculated as  

 

  
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i accaccstdS  (3.27) 

 

where the crossvalidation accuracy acc is the ratio of correctly classified vectors in the 

validation part of the dataset to the number of vectors in the validation part and acc  is the 

quotient of the total number of correctly classified vectors in the experiment to the 10-fold 

number of vectors in the dataset. 

 

The standard deviation between the mean accuracies of the whole crossvalidations  

was calculated as 
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where the crossvalidation accuracy acv is the ratio of correctly classified vectors in the single 

10-fold crossvalidation to the number of vectors in the training set.  

 

The standard deviation provides not only information about the classifier stability but 

perhaps even more information about the dataset properties. SMLP is a fully deterministic 

method and for the same training and test sets always gives the same results. Nevertheless, 

the standard deviations for SMLP are sometimes as high as 10%. For example, there are 100 

vectors in the training set and the classifier classifies 75% of them correctly and always 

classifies the same vectors wrongly no matter what is the division between the training and 

test set. In the best case, the vectors can be distributed in this way, that in half of the 

crossvalidation sets 7 of them are classified correctly and in the other half 8. Then the within 

crossvalidation standard deviation stdS will be 5.27% and there is no way to decrease it. But 

this does not tell us anything about the classifier stability. The between crossvalidation 

standard deviation stdCv also will never be zero even for a deterministic classifier, because 

there are different vectors in particular training and test crossvalidation partitions, however 

this value can be used to assess how much a particular result can differ from the mean value 

and in this aim it is provided in the tables. The standard deviation can be used as an absolute 

classifier stability measure only if all the trainings and tests are carried out on the same two 

sets. 

 
 

Symbols used in the tables: 

 

TS  – separate test set  

10CV – 10-fold crossvalidation  

5CV – 5-fold crossvalidation 

12CV  – 12-fold crossvalidation 

L1O  – leave one out 

1ch  – one weight was changed at a time  

2ch  – two weights were changed at a time 

BS  – method based on beam search at feature level 

sdtS  – standard deviation of each test accuracy within a single crossvalidation 

StdCv  – standard deviation between the mean accuracies of the whole crossvalidations 

x-x-x – structure of the network (number of neurons in the successive layers) 

tc  – number of training cycles 

CN – number of networks in a committee 

r  – value of a regularization term in the error function  
i

i

v c

cvcv wrsdE 22

,, )(  

FG, FR , FT ,R – gaussian, rectangular, triangular and rotation of transfer functions 
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3.2.12.3.  Appendicitis 

 

The dataset was donated by prof. Shalom Weiss from Rutgers University. The 

purpose of the analysis is to predict whether the patient suffers from appendicitis. There are 

106 vectors, 21 (19.8%) in the first (no-appendicitis) class and 85 (80.2%) in the second 

(appendicitis) class. The dataset contains 7 continuous features, values of medical tests: 

f1: WBC1  

f2: MNEP  

f3: MNEA  

f4: MBAP  

f5: MBAA  

f6: HNEP  

f7: HNEA  

 

Logical rules were obtained with 1 hidden neuron per class. With more hidden 

neurons per class more detailed rules are obtained, covering correctly more training vectors, 

however they already overfit the data  (using the more complex rules leads to lower accuracy 

in crossvalidation tests), thus it is not advocated to use them. Although the best result quoted 

in Table 3.8 was found by the IncNet neural network with 30 neurons, this was obtained with 

a high crossvalidation variance and the accuracy was higher in the test than on training set 

thus the best stable solution in this case is that of PVM. 

 

 

Table 3.8. Classification results for the Appendicitis dataset. 
 

method training 

% 

test 

% 

test 

method 
source 

incNet (1100 epochs,  

30 neurons) 

90.1 90.9 10CV [Jankowski 2003] 

PVM 91.5 89.6 L1O [UMK-KMK] 

SSV – beam search 94.3 88.7 L1O [Grąbczewski 2003] 

SSV 94.3 88.7 L1O [Grąbczewski 2003] 

6-NN - 88.0 10CV [UMK-KMK] 

FSM (FG+R+CN=20) - 87.6 10CV [Adamczak 2001] 

FSM (FG+R) - 86.2 10CV [Adamczak 2001] 

MLP BP - 83.9 10CV [UMK-KMK] 

CART 90.6 84.9 L1O [UMK-KMK] 

Naive Bayes 88.7 83.0 10CV [UMK-KMK] 

C-MLP2LN, 1 neuron 91.5 - L1O [UMK-KMK] 

C-MLP2LN, 2 neurons 94.3 - L1O [UMK-KMK] 

default  80.2   

NG (7-1, 10tc) 89.6 87.5 10CV this work 

VSS (7-1, 5tc, r=0.2) 89.8 88.0 10CV this work 

SMLP-DS (35-1-1, 1ch, 5ed) 92.2 88.2 10CV this work 

SMLP-VSS (35-1-1, 5ed) 90.8 87.3 10CV this work 
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Table 3.9. Additional parameters of the Appendicitis dataset training. 
 

method %test %stdCv 

 

%stdS %test 

balanced 

mean values in 

confusion matrix 

NG 87.5 0.6 11.1 77.3 12.7       8.3 

5.0       80.0 

VSS 88.0 0.7 8.7 76.8 12.2       8.8 

3.9       81.1 

SMLP 
DS 

88.2 1.1 9.6 74.5 10.9       9.1 

2.4       82.6 

SMLP 
VSS 

87.3 1.2 10.8 73.6 10.7       10.3 

3.2       81.8 

 

 

 

Before each crossvalidation run, the cut-off points were determined by dividing each 

feature into 5 equal width intervals. Thus, in particular crossvalidation runs they could 

slightly differ from the values presented in the rules. There was no further optimization of the 

cut-off points (The optimization was attempted but it did not improve the results). The 

weights were changed one at a time or two at a time with SMLP-DS or SMLP-VSS was used; 

all the methods produced similar accuracy. Depending which weight was changed as first, 

different rules were obtained: 

 

Rule 1:  if  hnea<5570 then no-appendicitis else appendicitis 

(accuracy: 88.7%, sensitivity: 61.9%, specificity: 95.5%)   

 

Rule 2:  if  mnea<6670 then no-appendicitis else appendicitis 

(accuracy: 87.7%, sensitivity: 71.4%, specificity: 91.8%)   

 

Rule 3:  if  wbc1<8500 then no-appendicitis else appendicitis 

(accuracy: 87.7%, sensitivity: 57.1%, specificity: 94.1%)  

 

Rule 4:  if  mnea<6670 and mbap<12.1 then no-appendicitis else appendicitis 

(accuracy: 91.58%, sensitivity: 61.9%, specificity: 98.8%)  

 

Rule 5:  if (wbc1<8500 or mnep<66) and mbap<12.1 then no-appendicitis else appendicitis  

(accuracy: 92.5%, sensitivity: 66.7%, specificity: 98.8%)  

 

The, rules represent alternative ways to understand the structure of the data and depending on 

the costs of medical tests experts may prefer one rule to the others. In crossvalidation tests, 

one of the above rules or another rule combining two features was generated. 

 

Three different rules (1,2,3) cover almost the same number of instances. Combining 

these rules, additional information can be obtained: 

 

Rule 6:  if (hnea<5570 and  mnea<6670) then no-appendicitis     (accuracy 89.2%) 

              if (hnea>5570 and mnea>6670) then appendicitis 

              if (hnea<5570 xor  mnea<6670) then P(no-appendicitis) = P(appendicitis)=0.5  
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Although the total accuracy of rule 6 is slightly lower than that of rule 4 and 5, it 

probably better describes the properties of this dataset, providing more information about the 

structure of the data, as can be seen in Fig. 3.13. A forest of SMLP networks trained with 

different order of weight examination and feature selection methods can be created to provide 

sets of equivalent rules, so that more information about the data can be obtained or the form 

of rules that experts find more interesting can be chosen. Fuzzy rules can describe points in 

areas where crisp rules overlap. The value of the membership function of such a point can be 

proportional either to the probability density for a given class in this area or to the distance 

from that point to the decision border.  

 

 

 
Fig. 3.13.  The Appendicitis dataset with decision borders. Projection into two-feature space. 

 

 

 

 

 

 

3.2.12.4.   Wisconsin Breast Cancer 

 

 This dataset was obtained from the University of Wisconsin Hospitals, Madison from 

Dr. William H. Wolberg and is publicly available at UCI [Mertz 1998]. The purpose of the 

analysis is to predict whether the patient suffers from a benign or malignant breast cancer. 

There are 699 vectors, 458 (65.5%) in the first class (benign) and 241 (34.5%) in the second 

class (malignant). The first feature is a record label, the remaining 9 features have been 

discretized into 10 bins: 

f1: Sample code number            

f2: Clump Thickness                

    f3: Uniformity of Cell Size       

    f4: Uniformity of Cell Shape     

    f5: Marginal Adhesion           

    f6: Single Epithelial Cell Size    

    f7: Bare Nuclei                    

    f8: Bland Chromatin                

    f9: Normal Nucleoli                

  f10: Mitoses   
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Table 3.10. Classification results for the Wisconsin Breast Cancer dataset. 
 

method training 

% 

test 

% 

test 

method 
source 

IncNet (3000 epochs, 40 

neurons) 

97.6 97.1 10CV [Jankowski 1999] 

3-NN, Manhattan - 97.1 10CV [UMK-KMK] 

20-NN, Euclides - 96.9 10CV [UMK-KMK] 

FDA - 96.7 10CV [Ster 1996] 

MLP BP - 96.7 10CV [Ster 1996] 

FSM (FG+R+CN=30) - 96.6 10CV [Adamczak 2001] 

LVQ - 96.6 10CV [Ster 1996] 

Naive Bayes - 96.4 10CV [UMK-KMK] 

SSV - 96.3 10CV [Grąbczewski 2003] 

LDA - 96.0 10CV [Ster 1996] 

QUEST - 95.9 10CV [Lim 2000] 

FSM (FR) - 95.4 10CV [Adamczak 2001] 

C4.5 - 94.7 10CV [Zarndt 1995] 

CART - 93.5 10CV [Zarndt 1995] 

default  65.5   

NG (10-2-1, 6tc, r=0.5)  97.2 96.9 10CV this work  

VSS (10-2-1, 4tc, r=0.5)  97.2 96.8 10CV this work 

SMLP-DS (97-1-1, 1ch-BS) 97.9 97.1 10CV this work   

SMLP-VSS  97.8 97.1 10CV this work    
 

 

Table 3.11. Additional parameters of the Wisconsin Breast Cancer dataset training. 
 

method %test %stdCv 

 

%stdS %test 

balanced 

mean values in 

confusion matrix 

NG 96.9 0.69 1.9 96.6 446.7     11.3 

10.5     230.5 

VSS 96.8 0.20 1.7 96.6 445.3     12.7 

9.7       231.3 

SMLP 
DS 

97.1 0.23 2.0 96.6 449.9      8.1 

 12.3      228.7 

SMLP 
VSS 

97.1 0.58 2.0 97.0 445.4     12.6 

8.1      232.9   

 

All rules were found using one hidden neuron and changing one weight at a time with 

SMLP-DS. The single zero weights surrounded by two +1 or two –1 weights of the same 

feature were automatically replaced by +1 or –1 weights respectively to remove the 

discontinuity. The third rule was found using beam search at feature level with changing one 

weight at a time.  

 

if  f3 <3.5 then benign else malignant   

(accuracy: 92.7%,  sensitivity: 96.9%, specificity: 84.7%) 
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if  f2<6.5 and f3<3.5 then benign else malignant     

(accuracy: 95.1%, sensitivity: 96.7%, specificity: 92.1%)  

 

if  f2<6.5 and f7<3.5 and f9<2.5 then benign else malignant     

(accuracy: 98.0%, sensitivity: 98.9%, specificity: 96.3%) This rule is very stable, it is 

generated in almost every crossvalidation run giving on average 97.9% accuracy on the 

training partition and 97.1% on the test partition of the dataset. 

 

It is worthwhile to note that the rules found here are both simpler and more accurate 

than those found by CART, C4.5 and SSV decision trees.  

 

In the coordinate system of sum S and normalized product NP of all the features 

except the first one (which is the sample code number), two clusters of data corresponding to 

classes are clearly visible (Fig. 3.14). The visible separation in the space between the two 

classes leaves 20 vectors on the wrong side, which gives 97.14% accuracy. The best 

classifiers are asymptotically approaching this level.  

 

  
Fig. 3.14. Projection of the Wisconsin Breast Cancer dataset into the normalized product NP 

and sum S coordinate system. (NP=const·(f2·...·f10)
1/9

 , 1/9 is used in the power exponent, because there 

are 9 features, const is a normalization factor, to make the mean value of NP equal to the mean value of S.) 

 

 

 

3.2.12.5. Thyroid 

 

The dataset is publicly available at UCI [Mertz 1998]. The purpose of the analysis is 

to predict whether the patient suffers from primary hypothyroid, compensated hypothyroid or 

is healthy (no hypothyroid) given the results of various medical tests carried out on the 

patient. The training set contains 3772 vectors: 93 (2.5%) in the first class (primary 

hypothyroid) and 191 (5.1%) in the second class (compensated hypothyroid) and 3488 

(92.4%) in the third class (no hypothyroid). The test set contains 3428 vectors: 73 (2.1%) in 
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the first class and 177 (5.2%) in the second class and 3178 (92.7%) vectors in the third class. 

The dataset contains 21 features, 6 continuous and 15 binary: 

 f1: age (continuous) 

 f2: sex (binary) 

 f3: treatment with thyroxine (binary) 

 f4: previous treatment with thyroxine (binary) 

 f5: treatment with antithyroid (binary) 

 f6: sick (binary) 

 f7: pregnant (binary) 

 f8: thyroid-surgery (binary) 

 f9: treatment with iodine 131- (binary) 

 f10: test for hypothyroid (binary) 

 f11: test for hyperthyroid (binary) 

 f12: treatment with lithium (binary) 

 f13: goiltre (binary) 

 f14: tumor (binary) 

 f15: hypopituitary (binary) 

 f16: psychological symptoms (binary) 

 f17: TSH level (continuous) 

 f18: T3 level (continuous) 

 f19: TT4 level (continuous) 

 f20: T4U level (continuous) 

 f21: FTI level (continuous)  

 

Table 3.12. Classification results for the Thyroid dataset. 
 

method training test test method source 

PVM 99.79 99.33 TS [Weiss 1990] 

SSV 99.79 99.33 TS [Grąbczewski 2003] 

incNet (200 000 epochs, 

9 neurons) 

99.68 99.24 TS [Jankowski 1999] 

C4.5 - 99.2 TS [Zarndt 1995] 

FSM (FR+CN=20) - 99.1 TS [Adamczak 2001] 

QUEST - 99.1 TS [Lim 2000] 

CART - 99.1 TS [Zarndt 1995] 

C-MLP2LN 99.86 99.07 TS [UMK-KMK] 

FSM (FR) - 99.0 TS [Adamczak 2001] 

ID3 - 98.7 TS [Zarndt 1995] 

cascade correlation 100 98.48 TS [Schiffmann 1993] 

MLP + BP + genetic opt. 99.4 98.4 TS [Schiffmann 1993] 

1-NN, Euclides 98.4 97.7 TS [UMK-KMK] 

3-NN, Euclides 98.7 97.9 TS [UMK-KMK] 

MLP + BP 99.1 97.6 TS [Schiffmann 1993] 

Naive Bayes 97.03 96.06 TS [UMK-KMK] 

LDA - 93.81 TS [Lim 2000] 

CAL5 - 92.74 TS [Lim 2000] 

default  92.40   

VSS    (21-6-3, 40tc) 99.68 98.95 TS this work 

SMLP-DS   2x(x-1-1, 1ch) 99.79 99.33 TS this work  



 172 

   Table 3.13. Additional parameters of the Thyroid dataset training. 
 

method %test %std 

test 

%test 
balanced 

mean values in 

confusion matrix  

VSS 

test 

98.95 0.12 97.84 68        1      4 

0       175    2 

8     21    3149 

SMLP 
DS 

training 

99.79 0.00 99.23 91       0        2 

0       191       0 

3        3     3482 

SMLP 
DS 

test 

99.33 0.00 98.88 71        0          2 

0       177       0 

10     11     3157 

 

 

First the continuous features were discretized. Then instead of a simple feature 

ranking, a feature filter based on SSV criterion [Grąbczewski 2003] was used. The filter 

determined the following feature order according to decreasing mutual information: TSH,  

th-surgery, FTI, on-thyroxine, TT4, pregnant, I131_treatment, query-hyperthyroid, lithium, 

tumor and other features on further positions. The network training was performed on the two 

first classes separately using initially the balanced error and adjusting the cut-off points after 

each training cycles. Afterwards the error was changed to the standard error (that mainly 

shifted the cut-off point value for the TSH feature). The following rules were found changing 

one weight at a time with one hidden neuron per class: 

 

if  TSH>0.0061 and FTI<0.0647 and th-surgery=no then primary hypothyroid  
(training: sensitivity: 97.85%, specificity: 99.92%, test: sensitivity: 97.26%, specificity: 99.70 %) 

if  TSH>0.0061 and FTI>0.0647 and TT4<0.15  and on-thyroxine=no  and th-surgery=no  

then compensated hypothyroid 

(training: sensitivity: 100%, specificity: 99.92%, test: sensitivity: 100%, specificity: 99.66%) 

else no hypothyroid    

(training: sensitivity: 99.83%, specificity: 99.30%, test: sensitivity: 99.34%, specificity: 99.20%) 

 

(training accuracy: 99.79%, test accuracy: 99.33%) 

 
 The decision borders are almost ideally hyperrectangular and therefore the SMLP 

network can obtain very high accuracy with only one hidden neuron per class. The standard 

MLP network requires much more hidden neurons with sigmoidal transfer functions to 

approximate the decision borders with comparable accuracy.  
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3.2.12.6. Ljubljana Breast Cancer 

 

This breast cancer database from the University Medical Center, Institute of 

Oncology, Ljubljana, Yugoslavia was donated by M. Zwitter and M. Soklic and is publicly 

available at UCI [Mertz 1998]. The purpose of the analysis is to predict whether the patient 

suffers from recurrent or no-recurrent breast cancer. There are 286 vectors, 201 (70.2%) in 

the first (no-recurrent) class and 85 (29.8%) in the second (recurrent) class. The dataset 

contains 9 discrete features, some of them were originally continuous but are available only 

in the discretized form: 

f1: age  

f2: menopause  

f3: tumor-size 

f4: involved-nodes 

f5: node-caps 

f6: degree-malignant 

f7: breast 

f8: breast-quad 

f9: irradiation 

 

  

Table 3.14. Classification results for the Ljubljana Breast Cancer dataset. 
 

method training test test method source 

C-MLP2LN 78.0 77.4 10CV [UMK-KMK] 

PVM 77.4 77.1 10CV [Weiss 1990] 

MML - 75.3 10CV [Zarndt 1995] 

C4.5 - 73.9 10CV [Zarndt 1995] 

MLP BP - 73.5 10CV [Zarndt 1995] 

SSV - 72.7 10CV [Grąbczewski 2003] 

AQ15 - 72.0 10CV [Statlog 1994] 

FSM (FG+R) - 71.6 10CV [Adamczak 2001] 

CART - 71.4 10CV [Zarndt 1995] 

CN2 - 70.7 10CV [Zarndt 1995] 

Naive Bayes - 69.3 10CV [Zarndt 1995] 

ID3 - 66.2 10CV [Zarndt 1995] 

default  70.2   

NG (51-2-1, 6tc, r=0.35) 78.0 75.9 10CV this work 

VSS (51-2-1, 3tc, r=0.5) 78.8 76.0 10CV this work   

SMLP-DS (51-1, 2ch) 78.0 76.0 10CV this work 

SMLP-VSS (51-1) 78.9 75.7 10CV this work 

 

 

The rules for the Ljubljana Breast Cancer dataset were obtained with one hidden 

neuron per class, changing one weight at a time with SMLP-DS and with SMLP-VSS.  

 

if degree-malignant<3 than no-recurrent else recurrent  

(accuracy: 72.0%, sensitivity: 80.1%, specificity: 52.9%)  

 

if node-caps=no and degree-malignant=2 than no-recurrent else recurrent        

(accuracy: 75.5%, sensitivity: 94.5%,  specificity: 30.6%)  
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if involved-nodes>2 and degree-malignant>2 than recurrent else no-recurrent        

(accuracy: 76.2%, sensitivity: 31.8%,  specificity: 95.0%)  

 

 

Table 3.15. Additional parameters of the Ljubljana Breast Cancer dataset training. 
 

method %test %stdCv 

 

%stdS %test 

balanced 

mean values in 

confusion matrix 

NG 75.9 0.28 7.2 61.1 20.8      64.2 

4.6      196.4 

VSS 76.0 0.25 6.3 60.2 18.0     67.0 

1.7      199.3 

SMLP 
DS 

76.0 0.45 8.0 61.4 21.8    63.2 

5.6      195.4  

SMLP 
VSS 

75.7 0.92 8.3 60.5 19.6      65.4 

4.0      197.0  

 

 

 

 

 

 

 

 

 

 

3.2.12.7.  Cleveland Heart Disease 

 

 This dataset comes from the Cleveland Clinic Foundation and is publicly available 

form the machine learning database repository at UCI [Mertz 1998]. The purpose of the 

analysis is to predict the presence or absence of the heart disease given the results of various 

medical tests carried out on a patient. There are 303 vectors, 165 (54.5%) in the first class 

(healthy) and 138 (45.5%) in the second class (sick). The dataset contains 13 features: 

f1: age (continuous) 

f2: sex  (binary)  

f3: CP- chest pain type  (4 discrete values)  

f4: restbps - resting blood pressure (continuous) 

f5: chol - serum cholesterol in mg/dl (continuous) 

f6: fbs - fasting blood sugar > 120 mg/dl (binary) 

f7: restecg -  resting electrocardiographic results (3 discrete values)  

f8: thalach - maximum heart rate achieved (continuous) 

f9: exang - exercise induced angina (binary) 

f10: oldpeak - ST depression induced by exercise relative to rest (continuous) 

f11: slope of the peak exercise ST segment (discrete)  

f12: ca - number of major vessels colored by fluoroscopy (3 discrete values)  

f13: thal (discrete)  
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Table 3.16. Classification results for the Cleveland Heart Disease dataset. 
 

method training 

% 

test 

% 

test 

method 
source 

LDA - 84.5 10CV [Ster 1996] 

FDA - 84.2 10CV [Ster 1996] 

Naive Bayes - 83.4 10CV [UMK-KMK] 

FSM (FT+CN=20) - 83.2 10CV [Adamczak 2001] 

LVQ - 82.9 10CV [Ster 1996] 

FSM (FG+R) - 82.5 10CV [Adamczak 2001] 

SVM - 81.5 5CV [Bennet 1997] 

kNN - 81.5 10CV [Ster 1996] 

MLP BP - 81.3 10CV [Ster 1996] 

CART - 80.8 10CV [Ster 1996] 

SSV - 79.7 10CV [Grąbczewski 2003] 

RBF - 79.1 10CV [UMK-KMK] 

ASR - 78.4 10CV [Ster 1996] 

C4.5 - 77.8 5CV [Bennet 1997] 

QDA - 75.4 10CV [Ster 1996] 

LFC - 75.1 10CV [Ster 1996] 

ASI - 74.4 10CV [Ster 1996] 

OC1 - 71.7 5CV [Bennet 1997] 

1R - 71.0 10CV [UMK-KMK]  

FOIL - 66.4 10CV [UMK-KMK]  

default  54.13   

NG (24-2-1, 8tc, r=0.5) 86.9 85.0 10CV this work 

VSS (24-2-1, 3tc, r=0.7) 87.7 86.1 10CV this work 

SMLP-DS (28-1-1, 1ch) 84.5 81.5 10CV this work 

SMLP-VSS (28-1-1) 87.2 85.5 10CV this work 

 

 

Table 3.17. Additional parameters of the Cleveland Heart Disease dataset training. 
 

method %test %stdCv 

 

%stdS %test 

balanced 

mean values in 

confusion matrix 

NG 85.0 0.44 5.5 84.6 145.8      19.2 

26.4     111.6 

VSS 86.1 0.30 5.1 85.7 149.2      15.8 

26.4      111.6 

SMLP 
DS 

81.5 1.6 7.4 81.1 142.2     22.8 

33.2     104.8  

SMLP 
VSS 

85.5 0.57 6.0 85.0 149.8     15.2 

28.8     109.2 

 

 

Seven of the vectors originally contained one missing feature value, which was 

replaced by the average value for their class. 
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First the SMLP network was trained on each feature separately to build feature 

ranking. Various discretization methods gave various information gain of the continuous 

features, however the differences were not enough big to change any feature position in the 

ranking. The first seven features were: thal (76.90%), cp  (75.91%), ca  (74.92%),  exang  

(71.95%), oldpeak (70.30%), thalach (69.64%), slope (69.31%). Then the features were 

reordered according to the ranking. One hidden neuron was used in all trainings. The 

following rules were obtained with SMLP-DS changing one weight at time as well as with 

SMLP-VSS: 

 

if  thal<>2  then healthy else sick   

(accuracy: 76.9%, sensitivity: 79.4%,  specificity: 73.9%)  This rule is very stable, it is 

generated in each crossvalidation run giving on average 75.3% accuracy on the test part of 

the dataset. 

 

if  thal<>2 and cp<>2 and ca=0 then healthy else sick  

(accuracy: 85.5%, sensitivity: 89.7%, specificity: 80.4%) This rule is relatively stable, it is 

generated (sometimes slightly modified) in most of crossvalidation runs.  

 

 

 

 

 

 

 

 

3.2.12.8.  Pima Indians Diabetes 

 

This dataset was constructed by a selection from a larger database held by the 

National Institute of Diabetes and Digestive and Kidney Diseases. It is publicly available 

from the machine learning database repository at UCI [Mertz 1998]. The patients represented 

in this dataset are females at least 21 years old of Pima Indian heritage living near Phoenix. 

The problem posed here is to predict whether a patient would test positive for diabetes given 

a number of physiological measurements and medical test results. This as a two-class 

problem with class value 1 being interpreted as “tested positive for diabetes”. The dataset has 

768 vectors, 500 (65.1%) in the first class (no diabetes) and 268 (34.9%) in the second class 

(diabetes). The dataset is rather difficult to classify. The class value is really a binarised form 

of another attribute, which is itself highly indicative of certain types of diabetes but does not 

have a one-to one correspondence with the medical condition of being diabetic. The feature 

f1 is discrete, the other 7 features are continuous:  

f1: number of times pregnant 

f2: plasma glucose concentration in an oral glucose tolerance test 

f3: diastolic blood pressure (mm/Hg) 

f4: triceps skin fold thickness (mm) 

f5: 2-hour serum insulin (mu U/ml) 

f6: body mass index (kg/m
2
) 

f7: diabetes pedigree function 

f8: age (years) 
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Table 3.18. Classification results for the Diabetes dataset. 
 

method training test test method source 

logDA - 77.7 12CV [Statlog 1994] 

DIPOL92 - 77.6 12CV [Statlog 1994] 

incNet (5000 epochs, 

100 neurons)  

77.2 77.6 10CV [Jankowski 1999] 

LDA - 77.5 12CV [Statlog 1994] 

SMART - 76.8 12CV [Statlog 1994] 

QUEST - 76.7 12CV [Lim 2000] 

RBF - 75.7 12CV [Statlog 1994] 

FSM (FT+CN=20) - 75.6 10CV [Adamczak 2001] 

ITRULE - 75.5 12CV [Statlog 1994] 

MML - 75.5 10CV [Zarndt 1995] 

FSM (FT) - 75.2 10CV [Adamczak 2001] 

MLP BP - 75.2 12CV [Statlog 1994] 

CAL5 - 75.0 12CV [Statlog 1994] 

SSV - 74.8 12CV [Grąbczewski 2003] 

CART - 74.7 10CV [Zarndt 1995] 

CASTLE - 74.2 12CV [Statlog 1994] 

Naive Bayes - 73.8 12CV [Statlog 1994] 

QDA - 73.8 12CV [Statlog 1994] 

C4.5 - 73.0 12CV [Zarndt 1995] 

LVQ - 72.8 12CV [Statlog 1994] 

SOM - 72.7 12CV [Statlog 1994] 

AC
2
 - 72.4 12CV [Statlog 1994] 

NewID - 71.1 12CV [Statlog 1994] 

CN2 - 71.1 12CV [Statlog 1994] 

ALLOC80 - 69.9 12CV [Statlog 1994] 

kNN - 67.6 12CV [Statlog 1994] 

default  65.1   

NG (8-2-1, 5tc, r=0.5) 77.8 77.0 10CV this work 

VSS (8-2-1, 3tc, r=0.5) 78.2 77.3 10CV this work 

SMLP-VSS (40-1, 3tc, 

r=0.5) 

78.6 76.8 10CV this work 

 

 

Table 3.19. Additional parameters of the Diabetes dataset training. 
 

method %test %stdCv 

 

%stdS %test 

balanced 

mean values in 

confusion matrix 

NG 77.0 0.40 4.2 72.6 155.6    112.4 

64.0     436.0 

VSS 77.3 0.26 4.8 72.9 156.0    112.0 

62.2      437.8 

SMLP 
VSS 

76.8 0.30 4.1 72.0 151.0    117.0 

61.6     438.4 
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The first four features in the feature ranking are: f2 (75.0%), f1 (67.8%), f8 (66.9%), 

f6 (66.3%). The following rules were obtained with one hidden neuron changing one weight 

at a time with SMLP-DS: 

 

if  f2>157 then no-diabetes else diabetes   

(accuracy: 75.0%) 

 

if  f1>6.85 and  f2<157 and f6>42 and 49<f8<70 then no-diabetes else diabetes   

(accuracy: 80.6%) 

 

 

 
 

3.2.13.  Conclusions 
 

A neural network approach to classification and rule extraction, called SMLP has 

been proposed. The model combines the advantages of MLP neural networks with the 

possibility of extracting simple rules in a comprehensive way. The training algorithms are 

much simpler than the gradient-based algorithms. Due to the perceptron properties, the rules 

given by hidden neurons are in the M-of-N form. Since the prepositional form of logical rules 

is usually preferred, M-of-N rules are reduced to AND + OR operations whenever possible.  

 

As the experiments showed, the accuracy of results on the popular benchmark data 

sets is comparable with the best results obtained from other methods, while the algorithms are 

simple and computationally efficient. It cannot be said that the only criterion of the rule 

quality is the classification accuracy either using crossvalidation or a separate test set. 

Sometimes rules which are simpler or which better reflect the data structure may be 

preferred, although their accuracy is lower. It is possible to obtain several sets of rules by the 

modification of network parameters and training process. A forest of SMLP networks can be 

built to give users the possibility of choosing sets of rules that are most suitable for their 

purpose. 

 

It seems that the search-based approach to logical rule extractions has a large potential 

worth further investigation.
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4.  Summary 

 
Several properties of MLP networks were examined, including the properties of MLP 

error surfaces, learning trajectories, trends of weight changes and neuron signals. The PCA-

based visualizations of many MLP error surfaces were presented and the factors influencing 

their properties were discussed. The possibility of training network in the reduced search 

space was discussed. The properties of error surface sections in different layer weight 

directions and in different phases of training were examined. 

 

Basing on the conclusions from this research, two new MLP learning algorithms were 

developed: numerical gradient (NG) and variable step search algorithm (VSS). The 

algorithms do not impose any restrictions on network structure and neural transfer functions, 

which in particular do not have to be differentiable. The algorithms were tested on many 

datasets and a comparison including many factors with other MLP learning algorithm was 

presented on several datasets. Especially VSS algorithm proved to have the ability of finding 

good solutions, with very low network error at a low computational effort and with high 

stability of the achieved results. Several methods of reducing the computational costs and 

improving network generalization were discussed. 

 

A search-based approach to logical rule extraction from MLP network with quantized 

parameters was presented. The logical rules are extracted from data by the analysis of the 

SMLP network weights. Two search-based algorithms from SMLP networks were proposed: 

the direct search method and a modified version of variable step search algorithms. Several 

additional aspects of these algorithms were discussed and possible solutions were proposed.  

 

It should finally be concluded that the search-based algorithms can be successfully 

applied for multilayer perceptron training and for logical rule extraction from data using MLP 

networks. The proposed solutions in many aspects performed better than gradient-based 

optimization algorithms.  

 

 

 

5.  Future Work 
 

 Search for other interesting projections of MLP error surface that will reveal more error 

surface properties, maybe some kinds of kernel PCA or other non-linear projections. 

 

 Apply VSS also to MLP trained for regression problems. 

 

 Find a more effective sequence of examining the weight changes in VSS.  

 

 Analyze MLP decision borders and the ways to influence them more precisely than only 

by minimizing the global error measure. 

 

 I have no plans concerning rule extraction systems, since the above-mentioned topics 

seem more interesting to me and moreover very many people work nowadays on rule 

extraction systems. So I leave this topic for them and wish them good luck. 
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