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Chapter 1
Streszczenie

Teza pracy. Redukcja rozmiaru zbioru danych pozwalająca na zwiększone możli-
wości doboru i przyśpieszenie uczenia modeli predykcyjnych, poprawę dokładności
ich działania oraz ułatwienie analizy danych w zagadnieniach klasyfikacji i regresji
może być skutecznie przeprowadzona poprzez dobrze opracowane algorytmy se-
lekcji wektorów. Można to osiągnąć za pomocą trzech rodzin metod: opartych na
podobieństwie, ewolucyjnych i wbudowanych w modele predykcyjne. Każda część
książki poświęcona jest jednej rodzinie. W każdej rodzinie metod przedstawiono
rozwiązania opracowane przez autora i zestawiono je z innymi istniejącymi rozwiąza-
niami oraz przedstawiono mocne i słabe punkty oraz obszary zastosowań poszczegól-
nych metod.

Selekcja wektorów oparta na podobieństwie

Pierwszy rodział omawia wstępne przetwarzanie danych, które jest kluczowym kro-
kiem w systemach eksploracji danych. Jest ono często ważniejsze niż wybór naj-
lepszego modelu predykcji, ponieważ nawet najlepszy model nie może uzyskać do-
brych wyników, jeśli uczy się przy użyciu niskiej jakości danych. Częścią wstępnego
przetwarzania danych jest selekcja danych, która obejmuje selekcję cech i selekcję
wektorów (instancji) i która znajduje zastosowanie praktyczne w szeregu problemów.

Celem selekcji wektorów jest zachowanie użytecznych informacji w danych oraz
odrzucenie błędnych informacji, przy jednoczesnym zmniejszeniu rozmiaru danych
poprzez wybranie optymalnego zestawu wektorów. Pozwala to na przyspieszenie
uczenia modelu predykcyjnego i uzyskanie niższego błędu predykcji.

Zmniejszenie rozmiaru danych ułatwia również analizę właściwości danych przez
ludzi, a także pozwala na ocenę oczekiwanej wydajności modeli predykcji. Innymi
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słowy, poprzez selekcję wektorów, chcemy "skompresować informację". W tej pracy
rozważamy selekcję wektorów w problemach zarówno klasyfikacji, jak i regresji.

W przypadku selekcji binarnej każdy wektor może być wybrany lub odrzucony.
W przypadku ważenia można przypisać wektorom wartości rzeczywiste od 0 do 1,
które odzwierciedlają ich znaczenie dla budowania modelu predykcyjnego. Następnie
model uwzględnia udział poszczególnych wektorów w procesie uczenia się propor-
cjonalnie do przypisanych im wag.

W praktyce selekcja wektorów jest bardzo złożonym zagadnieniem i nie możemy
powiedzieć, który wektor musi zostać odrzucony, nie biorąc pod uwagę, które inne
wektory również zostały odrzucone. Dzieje się tak dlatego, że wynik zależy od
całego zbioru wektorów, na którym są uczone modele predykcyjne, a zatem musimy
rozważyć ten zbiór wektorów jako całość, co sprawia, że selekcja wektorów jest prob-
lemem NP-trudnym.

Drugi rozdział przedstawia przegląd popularnych algorytmów selekcji wektorów
w zagadnieniach klasyfikacji a także zagadnienia redukcji kosztu obliczeniowego,
użycia różnych modeli predykcyjnych wewnątrz algorytmów selekcji wektorów i dos-
tosowania algorytmu k-NN GAS do danych etykietowanych. Nazywamy tu ten typ
metod metodami selekcji wektorów opartymi na podobieństwie, ponieważ wykorzys-
tują one w podejmowaniu decyzji podobieństwo wektorów albo w sensie odległości
euklidesowej albo innych miar bliskiego położenia.

Trzeci rozdział omawia zagadnienie selekcji wektorów w problemach regresyj-
nych. Większość metod selekcji wektorów bazuje tu na analizie etykiet klas sąsiednich
wektorów w celu określenia, czy dany wektor powinien zostać odrzucony czy też za-
akceptowany. W przypadku regresji porównywanie etykiet nie jest możliwe, ponieważ
wartości wyjściowe nie są nominalne, lecz ciągłe. W związku z tym zamiast etykiet
należy ocenić inną wielkość. Przedstawiono dwa podejścia do tego problemu: metodę
opartą na progach i metodę opartą na dyskretyzacji.

W metodzie opartej na wartości progowej proponowane podejście polega na za-
stosowaniu błędu modelu predykcyjnego (k-NN, sieci neuronowej, lub innego) przy
przewidywaniu wartości danego wektora i porównaniu go z predefiniowanym pro-
giem, aby określić, czy dany wektor powinien zostać zaakceptowany lub odrzucony:

jeżeli (error > α ∗ std(k)) to (.)

gdzie std(k) jest odchyleniem standardowym wyjść k najbliższych sąsiadów danego
wektora, natomiast (.) może oznaczać akceptację lub odrzucenie wektora, w za-
leżności od danego algorytmu.

Aby poprawić wydajność tej metody, próg powinien zależeć od lokalnych właś-
ciwości zbioru danych. W zbiorach danych istnieją obszary o niższym i wyższym
zróżnicowaniu danych. W obszarach bardziej jednorodnych nawet małe odchylenie
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od wartości przewidzianej przez k-NN może oznaczać, że dany wektor stanowi szum
i powinien zostać odrzucony przez T-ENN (Threshold-based ENN). W obszarach
o większym zróżnicowaniu takie odchylenia mogą być normalne. W tym celu próg
Θ ustanawiamy jako proporcjonalny do odchylenia standardowego wartości wyjś-
ciowych k najbliższych sąsiadów danego wektora.

To podejście można zastosować do dostosowania algorytmów ENN, CNN, DROP
i innych bazujących na najbliższych sąsiadach w celu dostosowania ich do zagadnień
regresji.

W metodzie opartej na dyskretyzacji podejście polega na bezpośrednim wyko-
rzystaniu algorytmów selekcji wektorów dla zadań klasyfikacji. W tym celu zmien-
na wyjściowa jest najpierw dyskretyzowana, a zatem problem jest przekształcany
w zadanie klasyfikacji wielo-etykietowej. Po zakończeniu selekcji wartość zmiennej
wyjściowej jest przywracania do pierwotnej wartości.

To podejście pozwala na stosowanie zdecydowanej większości metod selekcji wek-
torów oryginalnie przeznaczonych dla zagadnień klasyfikacji do selekcji instancji dla
zagadnień regresji. Dyskretyzacja jest kluczowym krokiem tej metody i ma decydu-
jący wpływ na działanie algorytmu, ponieważ granica między klasami determinuje
akceptację bądź odrzucenie wektorów. W większości przypadków dla 10 przedziałów
o stałej szerokości uzyskuje się dość dobre wyniki.

Czwarty rozdział przedstawia zagadnienie ważenia wektorów. Często trudno jest
określić optymalny próg odrzucenia, zarówno w przypadku selekcji wektorów opartej
na progu do zadań regresji, jak w przypadku problemów klasyfikacyjnych. Choć
tylko niektóre algorytmy selekcji wektorów dla klasyfikacji umożliwiają ustawie-
nie takiego progu, to zawsze można to uzyskać stosując komitety selekcji wektorów
z niedemokratycznego głosowaniem i w zależności od oczekiwanego stopnia kom-
presji regulować próg liczby członków komitetu, która musi za danym wektorem za-
głosować.

Jest to szczególnie istotne, gdy selekcji wektorów używamy w roli filtra szumów.
Zbyt liberalny próg nie odfiltrowuje całego szumu, podczas gdy zbyt rygorystyczny
próg odfiltrowuje nie tylko szum, ale także pewne użyteczne dane. W takich sytu-
acjach możemy zastąpić ostry próg przypisaniem wektorom pewnej wagi z zakresu
(0; 1). Im bardziej wektor wydaje się być odstającym, tym mniejsza waga jest mu
przypisana. Każdy wektor jest następnie uwzględniany w uczeniu modelu proporcjo-
nalnie do jego wagi. Na przykład w przypadku sieci neuronowej mnożąc błąd, który
sieć daje w odpowiedzi na podanie danego wektora przez jego wagę, w przypadku
k-NN oblicza się średnią ważoną k najbliższych sąsiadów dla regresji lub ważoną
klasę większościową dla klasyfikacji.

Jako wagę istotności danego wektora proponuje się użyć iloczynu jego poszczegól-
nych wag składowych (a przynajmniej tych z nich, które są wyznaczane): wagi atry-
butów, wagi odległości, wagi gęstości danych, wagi odstających wartości.
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Waga atrybutów to istotność poszczególnych atrybutów (cech), która może być
wyznaczona za pomocą filtra cech. W przypadku algorytmu k-NN często to znacząco
poprawia jego działanie. W przypadku sieci neuronowej mniej, bo sieć neuronowa już
wewnętrznie dokonuje ważenie cech przez ustawianie odpowiednich wag połączeń
wchodzących do neuronów.

Waga odległości to zwykła waga stosowana w ważonym k-NN polegająca na tym,
że wektory znajdujące się dalej od danego wektora mają mniejszy wpływ na wyz-
naczenie jego wartości.

Waga gęstości została już omówiona przy wyznaczaniu współczynnika Θ.
Waga odstających wartości polega na tym, że im dany sąsiad interesującego nas

wektora jest sam bardziej odstającym wektorem, tym jego wpływ jest mniejszy. Uży-
cie tej wagi wymaga przeprowadzenia dwóch przebiegów procesu, gdzie za pier-
wszym razem wyznaczamy tą wagę na podstawie pozostałych trzech wag, a za drugim
razem możemy już z niej skorzystać.

Piąty rozdział jest poświęcony komitetom algorytmów selekcji wektorów. Komitet
jest modelem predykcyjnym złożonym z kilku prostych modeli pracujących równole-
gle. Ostateczną wartość predykcji uzyskuje się w najprostszym przypadku przez
uśrednienie przewidywań jego modeli składowych w zagadnieniach regresji lub przez
głosowanie w klasyfikacji. Ponieważ w tym kontekście selekcję wektorów można
traktować albo jako zagadnienie regresji, gdy wektorom przypisujemy odpowiednie
wagi, albo klasyfikacji w przypadku selekcji binarnej, można do tego celu zastosować
znane z regresji i klasyfikacji rozwiązania komitetów, jak bagging, feature bagging
i inne. Jednak są tu pewne ograniczenia wynikające stąd, że w zagadnieniach klasy-
fikacji wektorów prawie nigdy nie wiemy, jaka jest prawidłowa decyzja.

Komitety dają nam tu dwie zalety. Pierwszą jest to, że tak jak w klasyfikacji,
komitet słabych modeli jest dobrym modelem na skutek tego, że poszczególne mo-
dele składowe mylą się w różnych przypadkach, a uśredniony wynik ich głosowa-
nia jest znacznie częściej poprawny. Drugą jest to, że taki komitet wcale nie musi
głosować demokratycznie. Np. jeśli komitet składa się z 30 algorytmów selekcji wek-
torów to można przyjąć, że wektor zostaje wybrany, jeśli głosowało za nim 15 al-
gorytmów, ale również można przyjąć, że wtedy, gdy tylko 10, lub gdy co najm-
niej 20 albo 25. Daje to możliwość większego kształtowania rozwiązań i uzyskania
całego frontu Pareto poprzez różne proporcje głosowania. To jest szczególnie istotne
w przypadku danych klasyfikacyjnych, gdzie większość algorytmów selekcji wek-
torów nie posiada możliwości kontroli progu, tak jak można to zrobić regulując Θ
w selekcji wektorów w zagadnieniach regresji. Przedstawione rozważania są zobra-
zowane przykładami otrzymanych frontów Pareto.

Szósty rozdział pierwszej części omawia łączną selekcję cech i wektorów. Ponie-
waż wybór cech i wektorów wpływa na siebie nawzajem, należy ustalić właściwą
kolejność selekcji tych dwóch wielkości, aby uzyskać najlepsze wyniki. Ogólna za-
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sada jest taka, że w selekcji danych należy najpierw usunąć szum, a potem dokonywać
kompresji (usunięcia wielkości zbędnych, redundantnych).

W zadaniach klasyfikacyjnych większość wektorów można usunąć, ponieważ są
one nieistotne, ponieważ znajdują się daleko od granic decyzyjnych. Pozostawienie
ich w żaden sposób nie wpływa na dokładność przewidywania. W przeciwieństwie
do tego znaczny procent cech często stanowi szum, a ich usunięcie poprawia dokład-
ność klasyfikacji. Podczas selekcji wektorów musimy precyzyjnie określić granice
klas, dlatego pożądany jest zestaw cech z dużą zdolnością przewidywania. Na pod-
stawie tej analizy można zaproponować, że selekcję cech najczęściej należy dokonać
przed selekcją wektorów. Rzeczywiście nasze eksperymenty dowiodły, że jest to naj-
lepsza opcja. W eksperymentach przetestowaliśmy również metodę iteracyjną, gdzie
za każdą iteracją usuwaliśmy tylko jedną funkcję i kilka instancji. To jednak nie za-
owocowało, a w większości przypadków nawet gorszym wynikiem, a rozwiązanie
było bardziej złożone i czasochłonne.

Sytuacja się zmienia, gdy szum jest zawarty bardziej w wektorach niż w cechach.
W takim przypadku należy najpierw dokonać selekcji wektorów, a następnie cech.
Przy podobnym rozkładzie najlepiej sprawdza się metoda iteracyjna, gdzie w każdej
kolejnej iteracji usuwa się najbardziej odstające cechy i wektory.

Metody ewolucyjne selekcji wektorów

Siódmy rozdział książki przedstawia w skrócie zasadę działania algorytmów genety-
cznych jedno i wielokryterialnych na przykładzie algorytmu NSGA-II.

Algorytmy ewolucyjne nie przyjmują żadnych założeń dotyczących właściwości
rozwiązania, ale weryfikują iteracyjnie dużą liczbę różnych możliwych rozwiązań
w sposób inteligentny, aby zminimalizować przestrzeń poszukiwań. Skutkuje to często
lepszymi rozwiązaniami lub lepszym (niższym) frontem Pareto w przypadku wielu
rozwiązań. Z drugiej strony jest to zwykle osiągane kosztem znacznie wyższych
kosztów obliczeniowych. Z tego powodu w tej pracy zwracamy szczególną uwagę na
ograniczenie kosztów obliczeniowych tak dalece, jak to możliwe, uzyskując porówny-
walne nakłady obliczeniowe z metodami selekcji wektorów opartymi na podobieńst-
wie, nie rzadko nawet niższe.

Ósmy rozdział poświęcony jest wykorzystaniu jednokryterialnych algorytmów
genetycznych do selekcji wektorów. Zaletą metody selekcji wektorów opartej na algo-
rytmach ewolucyjnych jest to, że algorytm ewolucyjny ocenia jakość prognozowania
dla całych podzbiorów wybranych wektorów i nie musimy jednoznacznie definiować
relacji wektorów do ich sąsiadów, aby zdecydować o jej wyborze lub odrzuceniu.
A to w metodach opartych na podobieństwie stanowiło istotny problem, zwłaszcza
w zagadnieniach regresji, które są bardziej złożone w tym względzie.
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Kolejną zaletą metod ewolucyjnych jest możliwość uzyskania rozwiązań z niższym
błędem predykcji i większą redukcją danych (kompresją), czyli lepiej spełniających
oba kryteria oceny selekcji danych.

W przypadku algorytmów jednokryterialnych funkcję dopasowania (fitness) można
wyrazić w postaci:

fitness = α · compression+ (1− α) · accuracy (1.1)

lub innej podobnej postaci, gdzie występują dwa kryteria, których waga jest balan-
sowana parametrem α.

Stosujemy najprostsze możliwe kodowanie problemu: każdy osobnik reprezentuje
jeden zbiór danych, a każda pozycja w chromosomie jeden wektor. Wartość zerowa na
tej pozycji oznacza, że nie został on wybrany, a wartość większa od zera jego wagę.
W przypadku selekcji binarnej wektorów dopuszczalnymi wartościami będzie tylko
0 i 1, zaś w przypadku ważenia wektorów liczba rzeczywista od 0 do 1.

Uzasadnieniem wyboru k-NN jako wewnętrznego algorytmu oceny jest szybkość
tego podejścia. Dzieje się tak dlatego, że pełny algorytm k-NN musi zostać wyko-
nany tylko raz przed rozpoczęciem optymalizacji. W przypadku innych algorytmów
predykcji byłoby to albo niemożliwe, albo znacznie bardziej złożone, a przez to mniej
wydajne. Załóżmy, że w populacji jest 100 osobników i że optymalizacja wymaga 30
epok. W tym przypadku wartość funkcji dopasowania musi być obliczona 3000 razy.
Uczenie każdego modelu 3000 razy byłoby obliczeniowo bardzo kosztowne.

Chociaż nasze poprzednie eksperymenty pokazały, że najlepsze wyniki pod wzglę-
dem balansu kompresja-klasyfikacja lub kompresja-rmse można zwykle uzyskać,
jeśli wewnętrzny model oceny jest tym samym algorytmem, co końcowy predyktor,
to w tej pracy poświęcamy tę niewielką poprawę, aby skrócić optymalizację pro-
cesu, często nawet o dwa lub trzy rzędy wielkości. Jednakże, jak pokażemy, kiedy
końcowym predyktorem jest sieć neuronowa MLP, do oceny wewnętrznej używamy
k-NN z odpowiednio dobranymi parametrami, m. in. poprzez system wag omówiony
w pierwszej części pracy, co sprawia, że jego przewidywania są możliwie zbliżone
do przewidywania sieci neuronowej. W ten sposób uzyskujemy lepsze wyniki, przy
jednoczesnym zachowaniu krótkiego czasu procesu selekcji wektorów.

W przypadku algorytmu k-NN obliczamy macierz odległości pomiędzy każdą parą
instancji w zbiorze treningowym i następnie sortujemy ją w jednym z wymiarów,
przechowując tylko wartości wyjściowe kolejno uporządkowanych sąsiadów oraz nu-
mery ich w zbiorze. Następnie obliczamy średnią (w regresji) lub klasę większościową
(w klasyfikacji) z k kolejnych sąsiadów, które zostały wybrane w danym osobniku.

Dziewiąty rozdział omawia zastosowanie wielkokryterialnych algorytmów gene-
tycznych do selekcji wektorów, a w szczególności algorytmu NSGA-II i jego mody-
fikacji. W przypadku optymalizacji wielokryterialnej, kluczową zaletą jest to, że
otrzymujemy pulę rozwiązań zlokalizowanych na froncie Pareto, gdzie każde z nich
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jest najlepsze dla określonego balansu kompresji jakości predykcji (dokładności klasy-
fikacji lub błędu średniokwadratowego) i możemy wybrać jedno z tych rozwiązań.

Najlepsze rozwiązania otrzymaliśmy bazując na wielokryterialnym algorytmie
genetycznym NSGA-II i czyniąc szereg jego dostosowań do zagadnień selekcji i wa-
żenia wektorów tak w zagadnieniach klasyfikacji, jak i regresji.

W rozdziale jest szczegółowo omówiony szereg mechanizmów mających na celu
zarówno dalsze przyśpieszenie procesu selekcji wektorów, jak i poprawę jakości
otrzymywanych rozwiązań, popartych przykładami i graficzną reprezentacją otrzy-
manych wyników. Przedstawione są także porównania z metodami opartymi na podo-
bieństwie oraz graficzne przykłady otrzymanych frontów Pareto dla różnych parame-
trów. Jest to najdłuższy rozdział.

Dziesiąty rozdział przedstawia dodatkowe opcje pozwalające uzyskać lepsze wy-
niki oraz krótszy czas obliczeń przy dużych zbiorach danych. Partycjonowanie danych
może być używane w przypadku selekcji wektorów w dwóch celach: przyspieszenia
obliczeń i poprawy wyników. Pierwszy cel jest ważny tak w ewolucyjnej, jak w opartej
na podobieństwie selekcji wektorów. Drugi cel jest jednak ważniejszy w ewolucyjnym
procesie, ponieważ pozwala uruchomić optymalizację w poszczególnych obszarach
zbioru danych pod kątem optymalnej liczby iteracji. Jest to ważne, ponieważ opty-
malna liczba iteracji różni się w zbiorze danych treningowych. Jeśli optymalizacja
zostanie przeprowadzona zbyt krótko, optymalne rozwiązanie nie zostanie znalezione.
Jeśli zbyt długo, to prawdopodobnie wystąpi nadmierne dopasowanie; wyniki na
zbiorze treningowym będą się poprawiać, a wyniki na zbiorze testowym zaczną stop-
niowo spadać. Inną kwestią jest to, że algorytmy genetyczne często są mniej wydajne,
jeśli chromosom jest zbyt długi (dziesięć tysięcy pozycji lub więcej), to znaczy wyma-
gają więcej iteracji.

Partycjonowanie danych jest bardziej efektywnym rozwiązaniem w problemach
regresji. Dzieje się tak dlatego, że w przypadku problemów regresyjnych zmiany są
równo rozłożone w przestrzeni danych. W przypadku problemów klasyfikacyjnych
ważne jest, aby zachować granice decyzyjne i podczas partycjonowania przestrzeni
danych musimy zachować szczególną ostrożność, aby nie dzielić danych wzdłuż
granic decyzyjnych, ponieważ selekcja wektorów po prostu nie będzie działać z takimi
partycjami.

Co więcej, nie musimy obliczać dla każdego wektora całej macierzy odległości
używanej przez k-NN, ale tylko odległości do kilku jego najbliższych sąsiadów.
Możemy tu użyć grupowania danych (klasteringu), np. metody k-średnich, aby zgrupo-
wać dane w kilka klastrów, a następnie obliczyć odległości tylko w obrębie poszczegól-
nych klastrów lub w wersji dokładniejsze także klastrów sąsiednich. Bowiem klaste-
ring k-średnich ma w praktyce złożoność około O(k · n), gdzie k jest liczbą klas-
trów. Następnie złożoność obliczania wszystkich macierzy odległości tylko w obrębie
poszczególnych klastrów jest już w przybliżeniu liniowa.
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Jednym z ostatecznych celów selekcji wektorów jest zminimalizowanie rmse na
zestawie testowym, ale celem używanym bezpośrednio podczas procesu wyboru in-
stancji jest rmse na zbiorze treningowym, ponieważ zestaw testów jest nieznany pod-
czas optymalizacji. Wymusza to wczesne zatrzymanie (early stopping), zanim nastąpi
nadmierne dopasowanie do danych. W przypadku dużych zbiorów danych występuje
problem z określeniem optymalnego punktu zatrzymania, ponieważ w niektórych
obszarach zbioru danych optymalizacja zbiega się szybciej niż w innych. Gold-
berg napisał [1], że algorytmy ewolucyjne działają "przez budowanie krótkich, nis-
kich rzędów i wysoce dopasowanych schematów (bloków), które są rekombinowane
i ponownie próbkowane w celu utworzenia łańcuchów o potencjalnie wyższej spraw-
ności". W ten sposób dopasowanie może już się rozpocząć w takim bloku, podczas
gdy w innych częściach chromosomu potrzeba jeszcze więcej iteracji, aby zbliżyć się
do optymalnego punktu.

W pracy omawiane jest również zagadnienie wykorzystania kilka frontów Pareto
w optymalizacji wielokryterialnej celem osiągnięcia bardziej zróżnicowanej puli roz-
wiązań i redukcji możliwości przeuczenia modelu.

Jedenasty rozdział poświęcony jest skracaniu czasu obliczeń i optymalizacji se-
lekcji wektorów z wykorzystaniem algorytmów genetycznych. Omawiane są szcze-
gółowo zagadnienia doboru optymalnych metod inicjalizacji danych, metod krzyżowa-
nia wielopunktowego, doboru optymalnej wielkości populacji, optymalizacji wew-
nętrznych funkcji kryterialnych algorytmu genetycznego, możliwości dynamicznego
skrócenia długości chromosomu podczas obliczeń oraz innych rozwiązań mających
na celu poprawę jakości otrzymywanych zbiorów oraz skrócenie czasu obliczeń.

Omawiana jest także szczegółowo złożoność obliczeniowa zastosowanego rozwią-
zania oraz poszczególne jej składowe. Metoda ma liniową złożoność obliczeniową.

W pracy przeprowadzono również porównania eksperymentalne wybranych (możli-
wie najlepszych) metod selekcji wektorów wykorzystujących różne metody działania.

Dwunasty rozdział przedstawia temat jednoczesnej selekcji cech i wektorów z wy-
korzystaniem algorytmów ewolucyjnych, w tym przez metody sekwencyjne, poprzez
podział chromosomu na sekcję cech i wektorów, oraz z użyciem algorytmów koe-
wolucyjnych, utrzymujących populację cech i populację wektorów.

Trzynasty rozdział poświęcony jest selekcji wektorów w zagadnieniach wieloe-
tykietowych, gdzie należy dokonać selekcji wektorów tak, aby wybrany zbiór mini-
malizował błąd predykcji jednocześnie dla każdego wyjścia. Przedstawione są różne
możliwości optymalizacji w zagadnieniach wieloetyketowych, jak single target model,
model chain, multi-target stacking, ensemble of model chains, które wykorzystują
wzajemne powiązania między wyjściami. Przykładowo łańcuch modeli (model chain)
zaczyna predykcję od pierwszego wyjścia korzystając tylko z wejść, a następnie
dodaje to przewidziane wyjście jako kolejne wejście (opcjonalnie z inną wagą) do
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przewidywania kolejnego wyjścia, itd. Przedstawione metody wykorzystują algorytm
NSGA-II do przeszukiwania przestrzeni rozwiązań, wraz z większością usprawnień
omówionych w poprzednich rozdziałach. Wyniki uzyskane na benchmarkowych zbio-
rach regresyjnych wielowyjściowych pozwoliły na znaczne ograniczenie wielkości
zbioru przy jednoczesnym zmniejszeniu błędu predykcji.

Selekcja wektorów wbudowana w sieci neuronowe

Czternasty rozdział przedstawia w skrócie zasadę działania sieci neuronowych typu
MLP oraz dwa algorytmy ich uczenia używane w tej pracy: Rprop i VSS opra-
cowany przez autora niniejszej książki. Algorytmy te są wykorzystywane w dal-
szych rozdziałach w uczeniu sieci neuronowych oraz w selekcji wektorów za pomocą
sieci neuronowych. Zaletą algorytmu VSS jest to, że nie wymaga on ciągłych ani
różniczkowalnych funkcji odpowiedzi sieci neuronowej, a zatem dobrze nadaje się do
zastosowania w uczeniu sieci neuronowej nieczułej na szum.

Piętnasty rozdział omawia metody selekcji wektorów wbudowane w uczenie
sieci neuronowych, koncentrując się na selekcji i ważeniu wektorów celem redukcji
szumów.

Sieci neuronowe typu perceptrona wielowarstwowego (MLP) są uczone przez mi-
nimalizowanie funkcji błędu na zbiorze treningowym. Taki sposób uczenia sieci jest
silnie uzależniony od jakości danych uczących. Algorytmy uczenia sieci próbują
dopasować punkty danych tak blisko, jak to możliwe. Jest to ewidentnie oczywiste,
że wartości odstające i błędne będą wpływać na końcową jakość predykcji sieci,
prowadząc do niewłaściwego odwzorowania przestrzeni wejściowej na wyjście. Naj-
częściej stosowana miara błędu, błąd średnio-kwadratowy (rmse), może być uważana
za optymalną tylko dla czystych danych treningowych lub danych zanieczyszczonych
przez co najwyżej błędy generowane z rozkładu Gaussa o zerowej średniej.

Aby rozwiązać ten problem, zaproponowano kilka metod, głównie opartych na
zmodyfikowanych miarach błędu. Zastępują one kryterium rmse nową funkcją błędu,
opartą na koncepcji tzw. metod odpornych na błędy w danych. Omówiono w pracy
szereg takich funkcji statycznych (ILMedS, LTA, MedSum i inne) oraz funkcje
dynamiczne, czyli takie, które się zmieniają podczas uczenia sieci neuronowych.
Charakterystyczną cechą funkcji z obu tych grup jest to, że słabiej reagują na duże
błędy, tj. duży błąd sieci przepuszczony przez taką funkcję staje się mniejszym błę-
dem w ten sposób w mniejszym stopniu wpływając na wynik końcowy uczenia sieci.

Idea przedstawionych dynamicznych funkcji błędów polega na płynnym zmniejsze-
niu wpływu wartości odstających na trening sieciowy. Zatem, jeśli różnica pomiędzy
rzeczywistą a pożądaną odpowiedzią sieci jest mała, to błąd rośnie wraz z tą różnicą.
Gdy różnica dalej rośnie, błąd przestaje rosnąć, a ostatecznie zaczyna zmniejszać
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się z dalszym wzrostem różnicy, gdyż różnica jest przypuszczalnie związana z wek-
torem odstającym, którego wpływ na uczenie sieci należy zminimalizować dokonując
w ten sposób jego odrzucenia. Jednak funkcje takie muszą być wprowadzane stop-
niowo, ponieważ na początku treningu wagi sieci są losowe, a wysoka wartość różnicy
między wartością oczekiwaną a uzyskaną nie musi wskazywać na wektor odstający.

Szesnasty rozdział omawia połączenie metod selekcji wektorów wbudowanych
w sieci neuronowe z metodami opartymi na podobieństwie oraz zawiera opracowania
przeprowadzonych eksperymentów.

Siedemnasty rozdział omawia połączenie selekcji cech wbudowanej w sieci neu-
ronowe z selekcją wektorów. Selekcję cech z wykorzystaniem sieci neuronowych
można wykonać na kilka sposobów. Dwa podstawowe podejścia to analiza wag,
w tym metod przycinania i perturbacji danych wejściowych. W analizie perturba-
cyjnej zastępujemy wartości danej cechy losowymi wartościami w wektorach testo-
wych i obserwujemy, jak wpływa to na dokładność sieci. W analizie wagi zakładamy,
że mniej ważne cechy wygenerują mniejsze bezwzględne wartości wag i możemy
odrzucić cechy o niższej ważonej sumie wag w warstwie wejściowej. Wagi można
również wymusić na małych wartościach poprzez dodatkowy człon regularyzacyjny.
Analiza wag została wykorzystana w naszych eksperymentach. Natomiast bardziej
złożona metoda uwzględnia również pochodne.

Następnie omówiona jest redukcja wektorów nadmiarowych. Ze względu na nielin-
iowe funkcje transferu odpowiedzi sieci na poszczególne wektory zależą od aktual-
nego położenia punktu na funkcji transferu, a w zagadnieniach klasyfikacji na końcu
procesu uczenia sieci pozycja ta jest przeważnie w nasyconym obszarze, dlatego
należy dokonać pewnych dostosowań tak, aby zapobiec zbyt dobremu nauczeniu się
sieci przed dokonaniem selekcji wektorów, co pozwoli na ich zlokalizowanie i wye-
liminowanie.

W rozdziale tym przeprowadzone są też porównania wyników otrzymanych tymi
metodami i w oparciu o metody oparte na podobieństwie oraz w oparciu o połączenie
tych dwóch grup metod.

Osiemnasty rozdział przedstawia zagadnienie ekstrakcji reguł logicznych z sieci
neuronowych i przegląd przykładowych metod. Znaczna część rozdziału poświęcona
jest specjalnej strukturze i dopasowanemu do niej algorytmowi uczenia sieci neu-
ronowej opracowanej przez autora, która umożliwia jednoczesną predykcję, selekcję
cech i wektorów oraz dekompozycyjną ekstrakcję reguł logicznych z danych.

Główny problem selekcji cech z użyciem sieci neuronowych, a jeszcze bardziej
ekstrakcje reguł logicznych jaki występuje przy klasycznej sieci neuronowej typu
MLP jest bardzo złożona propagacja sygnału przez sieć, ponieważ szczególne wagi
ukrytych neuronów są wspólne dla każdego neuronu wyjściowego reprezentującego
każdą klasę. Przedstawione rozwiązanie używa dedykowanych ukrytych neuronów
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dla każdej klasy w zagadnieniach klasyfikacji dla każdego przedziału wartości wyjś-
ciowej w problemach regresji. Pozwala to znacznie uprościć analizę, a także sprawia,
że sieć jest łatwiejsza do nauczenia, ponieważ problem z klasyfikacji wieloetykietowej
zostaje sprowadzony do wielu problemów jednoklasowych. Jeśli dane są ciągłe,
muszą zostać zdyskretyzowane przed uczeniem sieci. Neurony mają sigmoidalną
funkcję transferu, której nachylenie stopniowo się zwiększa podczas uczenia sieci,
aż do funkcji skokowej. W połączeniu z członem regularyzacyjnym wymuszającym
ostateczne przyjęcie przez wagi tylko jednej z trzech możliwych wartości (-1, 0,
1) umożliwia to prostą ekstrakcję reguł logicznych. Dodatkowo celem zwiększenia
dokładności, zwłaszcza w zagadnieniach regresji dopuszcza się możliwość dodania
prostego członu reguły skośnej w obrębie poszczególnych neuronów wyjściowych.

Istnieją dwa mechanizmy selekcji wektorów celem redukcji szumu: mechanizm
omawiany już w tradycyjnych sieciach neuronowych, oraz mechanizm oparty na eli-
minacji wektorów nie reprezentowanych przez żaden neuron warstwy ukrytej.

Podsumowanie zestawia możliwości selekcji wektorów oraz wskazuje możliwe
dopasowania optymalnych rozwiązań w zależności od problemu oraz oczekiwań
użytkownika.

Do najważniejszych metod opracowanych przez autora można zaliczyć:

1. algorytmy selekcji wektorów dla zagadnień regresji
2. schematy ważenia wektorów
3. modele komitetów algorytmów selekcji wektorów
4. jednokryterialne metody ewolucyjne selekcji wektorów
5. wielokryterialne metody ewolucyjne selekcji wektorów w zagadnieniach klasy-

fikacji i regresji danych jedno- i wieloetykietowych
6. aglorytmy selekcji wektorów celem redukcji szumu wbudowane w sieci neuronowe
7. algorytmy selekcji wektorów celem redukcji rozmiaru zbioru danych wbudowane

w sieci neuronowe
8. algorytmy łącznej selekcji cech, wektorów i ekstrakcji reguł logicznych w zagad-

nieniach klasyfikacji i regresji wbudowane w sieci neuronowe
9. połączenie metod selekcji wektorów z różnych grup oraz selekcji wektorów z se-

lekcją cech
10. inne usprawnienia w metodach selekcji wektorów.





Chapter 2
About the Book

The thesis of the work is that instance selection can be effectively used to improve
prediction accuracy by noise reduction and to reduce the data size, however the solu-
tions must be properly selected and tuned to the specific problem. It can be achieved
with three families of methods: similarity-based, evolutionary and embedded. Each
part of the book is dedicated to one family. In each method family the solutions de-
veloped by the author are presented, compared with other existing solutions and the
strong and weak points and areas of application of the methods are presented.

The purpose of data preprocessing, which includes instance selection, is to im-
prove the data quality, as in machine learning the accuracy of the predictive models
is limited by the quality of the training data. Instance selection removes noisy and
unnecessary data. This improves the model prediction, accelerates its training and
makes the data easier to analyze and interpret. Variants of instance selection are in-
stance weighting and instance generation. In instance weighting each instance is as-
signed a weight expressing its importance, which will be used in the predictive model
training. In instance generation new, more representative instances are generated to re-
place the original ones. The book presents the newest and most effective solutions in
three groups of instance selection approaches and joint instance and feature selection,
especially those developed by the author and his research group and discusses their
complexity, efficiency and usage areas.

In the first part of the book we discuss a group of instance selection algorithms,
which we call "similarity-based methods", because they use some similarity measures
between the instances, as the Euclidean distance or relative position on the Voronoi
cells. We will start from presenting this group including adaptation of the instance
selection algorithms to regression problems, optimization of the instance weights
reflecting the attribute, neighbor, distance, density and gradient properties, enhance-
ments of ensemble methods in instance selection and concurrent instance and feature
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selection. The advantage of this group is speed, simplicity of implementation and pos-
sibility to get explanation why particular instances were selected. Also the correlation
between the data properties, performance of the predictive model and outcome of in-
stance selection algorithms will be discussed.

In the second part evolutionary instance selection methods will be discussed. In
genetic algorithms typically each instance is encoded into one position in the chromo-
some. In a single objective optimization we set a parameter to balance the two objec-
tives: data reduction and prediction error. In multi-objective optimization we obtain
a set of the best solutions on the Pareto front. As the instance selection is performed
on the training set and the final purpose it to obtain good accuracy on the test set, the
process is prone to over-fitting and solutions to this problem will be presented, as new
population initialization schema, adjusted mutation operators or dataset partitioning.
New methods of improving the results and accelerating the process will be discussed,
as proper selection of the inner evaluation model, performing the whole training algo-
rithm only once and then only very little additional calculations while evaluating the
fitness function and optimization of particular parameters of the evolutionary algo-
rithm. Also joint evolutionary instance and feature selection and the relation between
ensembles and Pareto front solutions will be discussed. The advantage of this group is
that usually higher prediction accuracy and stronger data reduction can be obtained.

In the third part we present how instance selection embedded into predictive
models can be incorporated into the model learning process. The book focuses on neu-
ral network models. The basic idea here is that the instance properties are reflected by
the model response to presenting that instance. In general high error indicates outliers
and very low error may indicate an unnecessary instance. However, that depends on
the network training phase and the considered problem. Thus the network training pro-
cess should be appropriately modified. Also special network architectures and learning
algorithms specially designed for instance selection and logical rule extraction will be
introduced, where the trade-off between the data reduction, interpretation simplicity
and accuracy can be addressed, e.g. by implementing incremental network structures.
Methods of instance assessing, weighting and removing will be discussed, including
joint instance and feature selection. The advantage of this group is that a separate
step of instance selection is not required, the obtained results are optimized for that
particular predictive model and to some extent we can also get explanation why par-
ticular instances were selected. Finally a comparison of the approaches and usage
recommendations are provided.
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The main contributions of the author include development of:

1. instance selection algorithms for regression tasks
2. instance weighting schemes
3. ensemble models of instance selection algorithms
4. single-objective methods of evolutionary instance selection
5. multi-objective methods of evolutionary instance selection for classification and

regression tasks of single and multi-label data
6. a number of improvements in evolutionary instance selection methods
7. instance selection methods for noise reduction embedded in neural networks
8. instance selection methods for data condensation embedded into neural networks
9. methods for joint selection of features, instances and extraction of logic rules in

classification and regression tasks embedded into neural networks
10. methodology for combining methods of instance selecting from different groups

and combining instance selection with feature selection.





Part I
Instance Selection with Similarity-based

Methods





Chapter 1
Introduction to Instance Selection

Abstract In this chapter we introduce the concept of data selection, which consists
of feature selection and instance selection. We define the different purposes of in-
stance selection, as data condensation, noise reduction and different approaches to
these tasks. We also present the datasets used in experiments described in this book.

1.1 Data: Features and Instances

Classification and regression tasks are very common problems in our everyday life.
As a results they are also the most frequent problems in machine learning, which
is aimed to help us make the correct decision or to make this decision for us. In a
classification problem an object is assigned to one of the predefined categories, called
classes, based on the object properties. In a regression problem an object is assigned
a real value based on the object properties.

When machine learning is used to predict the object class or real value, it is done
based on the object similarity to the known objects. In order to accomplish this, var-
ious machine learning models analyze the dataset of known objects and using some
algorithms and heuristics determine the most probable class or real value of the object.
Sample datasets organized in the matrix form are shown in Tables 1.1 and 1.2. Each
object in the dataset is known as an instance or vector and is represented by one row,
while each column represents one feature.

Some instances can be either redundant or may contain erroneous values. E.g. in
Table 1.1 instance4 and instance5 are redundant, so one of them can be removed
from the dataset. instance6 is probably wrongly annotated, as its features indicate that
it should belong to class A, while it belongs to class B. In order to improve the data
quality also instance6 should be removed. In Table 1.2 instance4 and instance5
contain very similar values and probably they are redundant, but this is not clear in
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Table 1.1. Dataset format for classification tasks.

feature_f1 feature_f2 class
instance1 209 6 A
instance2 307 8 A
instance3 240 9 A
instance4 292 7 A
instance5 292 7 A
instance6 237 8 B
instance7 840 26 B
instance8 892 23 B
instance9 830 25 B

instance10 890 27 B

Table 1.2. Dataset format for regression tasks.

feature_f1 feature_f2 output
instance1 209 6 0.120
instance2 245 7 0.140
instance3 305 8 0.160
instance4 352 9 0.180
instance5 354 9 0.181
instance6 367 10 0.300
instance7 804 26 0.375
instance8 848 27 0.400
instance9 898 28 0.425

instance10 932 29 0.450

this case, as they are not identical. Can one of them get removed? To answer this
question we have to analyze how this removal will influence the prediction model that
learns from this dataset. Also instance6 seems to be an outlier - its features indicate
that the output should be about 0.185, while it is 0.300. But maybe it is not, maybe
the data does not change linearly and there is some sudden step between instance5
and instance6? So should instance6 get removed? Or maybe it should be treated by
the learning model with some uncertainty? As we can see the question of how some
instances should be treated is not always obvious and in this book we will discuss
various approaches to that topic.

Features, as well as instances can be either redundant or can bring no useful infor-
mation or even can bring some wrong information.



1.2 Purpose and Idea of Instance Selection 29

1.2 Purpose and Idea of Instance Selection

Before the prediction model can learn the data representation, first the data must be
collected and then prepared appropriately. This stage is called data preprocessing and
it is a crucial step in data mining systems. It is frequently more important than choice
of the best prediction model, as even the best model cannot obtain good results if it
learns using poor quality data [2]. A part of data preprocessing, on which we focus in
this book is data selection that comprises feature selection and instance selection.

The purpose of both feature selection and instance selection is to preserve useful
information stored in the data and reject the erroneous and redundant information,
by selecting an optimal set of features and instances. This allows to accelerate the
predictive model training, to obtain a lower prediction error and to make the data
analysis easier [3].

While redundant instances do not make usually any direct harm to the accuracy of
the predictive model, except the cases, where because of too big data size a limited
number of solutions can be examined, outliers can easily decrease prediction accuracy
of the model. An outlier can be defined as an observation numerically distant from the
majority of the data. Such a pattern can be a point that is close to its neighbors in the
input space, but far from them in the output space (different class or much different
value in the case of regression) or that is far from any points as well in the input as in
the output space. Outliers may be generated as measurement artifacts, rounding errors,
human mistakes, long-tailed noise distribution, etc. According to [4], the quantity of
outliers ranges from 1% to 10% in typical raw data. However the percentage of outliers
is hard to predict in the real data and according to our experience the amount of outliers
in some industrial data can be even higher than 10%. Detecting such points is not
trivial, moreover, sometimes it cannot be clearly stated if a given point is an outlier or
not and rather some degree of outlierness than a crisp decision is preferred. In general,
while building a data-driven model we do not intend to disregard such a point but only
weaken its influence on the model parameters. Reducing the data size also makes it
easier to analyze the properties of the data by humans, as well as can allow assessing
the expected performance of the prediction models [5]. In other words by instance
selection we want to "compress and improve the information".

Data selection, including instance selection finds practical application in a range
of problems, where the data size can be reduced. For example, it can be applied to
the datasets considered in this book, describing real-world problems from various
domains. Also the author took part in several practical implementations of instance
selection in the industry. One was an artificial intelligence-based system for control-
ling steel production in electric arc process, where there was a lot of data from the
previous processes (such as the amount of energy, of different chemical compounds,
etc.). Another one was in the electronics industry in a system for predicting the perfor-
mance of the electronic appliances (power inverters and others) where the amount of
data describing the parameters and behavior of the appliances was also very large. In
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both cases, there were regression problems with many redundant and erroneous data
and instance selection was very useful to enable efficient further processing of the
data.

The first difference between instance selection for classification and regression
tasks is that in classification it is enough to determine the class boundaries (the black
line in Fig. 1.1 left), and to select only the instances needed to determine the boun-
daries [6]. The remaining instances (in the gray-green area) can be removed. However,
before removing them the noisy instances, which do not match their neighbor class
must be removed first in order not to introduce the false classification boundaries.

In case of instance selection in regression tasks we also need to remove the noisy
instances, which do not match their neighbors (instances A and B in Fig. 1.1 right)
and then we can remove the instances that are very close to some other instances in
the input and the output space (instances C and D in Fig. 1.1 right). However, the
reduction cannot be so strong as in classification problems, where we need only the
class boundaries, because in regression each region in the data space is important.

Fig. 1.1. Instance selection in classification (left) and in regression (right). The axes
represent the features f1 and f2. In classification red circle and blue cross represent
points of two different classes. In regression the height of the vertical line represents
the output value of an instance and the circle shows its location in the input space.

Obviously, we always want to select the most representative instances, so that the
reduced set contains as much useful information and as low noise as possible. How-
ever, in practice instance selection is not so simple as in Fig. 1.1, where there are only
two attributes and a few instances.

Although the binary instance selection process can be considered a two class clas-
sification process, there are two fundamental differences between classification and
instance selection. First, in instance selection we do not know the true label (selected
or rejected) and second the decision if a particular instance should be selected strongly
depends on the selection of its neighbors, as the whole combination of instances con-
stitute the optimal training set. This makes instance selection an NP-hard problem and
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it is impossible to examine all the combinations of selected sets in order to find the
best one. The number of possible different sets of selected instances nk is given by
the following formula:

nk =

N∑
k=1

(
N

k

)
=

N∑
k=1

N !

k!(N − k)!
= 2N − 1 ≈ 100.3N (1.1)

For example, if there areN=1000 instances in the original dataset, we can obtain about
nk=10e+301 selected subsets. This is clearly seen that training the model on 10e+301
different subsets and selecting the best solution is impossible. Even if we evaluate
1e+9 solutions per second, it would take about 3e+284 years. In the case of instance
weighting, which will be discussed in the subsequent chapters, the number of possible
combinations get even much higher, depending on the weighting scheme. Thus it is
clearly evident that there is a need to design some instance selection algorithms that
will be more intelligent than just brute force.

For that reason, many methods of instance selection have been developed, including
some approaches, which jointly consider instance and featured selection. In this book
we will present three groups of the methods:

• instance selection with similarity-based methods
• instance selection with evolutionary methods
• instance selection embedded into learning models

In each of the groups the purpose of instance selection can be:

• noise removal (the methods are called noise filters)
• data size reduction (the methods are called condensation methods)
• noise removal and data size reduction

We will discuss the idea of each group, the problems that must be solved and imple-
mentations of some instance selection methods. A significant part of the book is based
on the author’s research, thus the instance selection methods presented here in detail
will be those developed by us, but also several methods of other authors will be shortly
presented to make the work comprehensive by providing as well the background as
the state of the art solutions.

A special kind of instance selection are instance generation and instance weighting.
In binary instance selection, each vector (instance) can be either selected or rejected. In
instance weighting, the instances can be assigned real value weights between 0 and 1,
which reflect the instance importance for building the predictive model. Then the
model includes the contribution of particular instances in the learning process pro-
portionally to the weights assigned to them [7].

Weight(x) = F (Properties(neighbors(x)),Model(x, neighbors(x))) (1.2)
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where Weight(x) is a value that indicates the importance of the vector x (how much
vector x is required or desired), Properties of the neighbors of x can express local
diversity of the data (e.g. standard deviation) or the trends in the data variability,
Model(x, neighbors(x)) is some predictor (classifier) that learns on neighbors(x)
and predicts x; that can be k-NN, neural network, etc. However, in most of the classi-
cal instance selection methods, Model(.) is based on some distance or neighborhood
concept, as it is simple and computationally efficient.

Then we set some threshold, and the instances with their weight below the threshold
get rejected. However, in instance weighting they still can be kept in the training
dataset and their influence on the model will be multiplied by their weights. For exam-
ple if the model is a neural network, then the error the network makes on each instance
is multiplied by the instance weight, if the model is k-NN, then a weighed voting takes
place.

For example in a noise filter method, k-NN can be used to predict the class of
each vector. If the real class of the vector is different than the predicted class then
the vector can be considered and outlier and will be marked for removal. In case of
instance weighting, the weight can be proportional to the percentage of the nearest
neighbors that belong to the same class as the query instance. Thus the vectors, which
differ much from their neighbors will not be removed, but will have lower influence
on learning the predictive model.

In regression problems there are no classes, but still we can use some similarity
measures between instances. In a similar way as in classification problems, in the case
of noise filters the instances that differ too much from their neighbors will be rejected
in instance selection or assigned a very small weights in instance weighting.

Condensation methods work by identifying and rejecting redundant and meaning-
less vectors, which can be rejected without degrading the classification of their neigh-
bors. The concept used in instance weighing and regression problems can be applied
here in an analogous way as with noise filters.

1.3 Definitions

The two objectives of instance selection are minimization of the number of instances
in the reduced training set S (we denote this set S, because it contains only selected
instances) and minimization of the error obtained on the test set by predictive models
trained on the reduced training set S. The first objective is known as minimization
of retention or maximization of reduction or compression. The second one in case
of classification is expressed by the classification accuracy, that is the ratio of the
correctly classified instances to all classified instances and in regression this is usually
expressed with root mean square error (rmse) - the standard and commonly used
measure of regressor performance. However, also other performance measures can be
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used, as balanced accuracy in classification or the coefficient of determination R2 in
regression.

We use the following definitions in this book:

compression = 1− Nsel
N

= 1− |S|
|T |

(1.3)

retention =
Nsel
N

=
|S|
|T |

(1.4)

where N is the number of all instances in the training set T, Nsel is the number
of selected instances from T, which create the selected set S. Thus retension =
1− compression.

We use the standard definitions of classification accuracy on the training set
(acctrn) and on the test set (acctst):

acctrn =
1

N

N∑
i=1

(C̄(xi) = C(xi)) over the training set T (1.5)

acctst =
1

Ntst

Ntst∑
i=1

(C̄(xi) = C(xi)) over the test set (1.6)

where C̄(xi) is the predicted and C(xi) is the actual class of the i-th instance xi (of
the training set T in Eq. 1.5 and of the test set in Eq. 1.6), N is the number of all
instances in the training set and Ntst in the test set.

We use the standard definitions of root mean square error on the training set
(rmsetrn) and on the test set (rmsetst):

rmsetrn =

√√√√ 1

N

N∑
i=1

(Ȳ (xi)− Y (xi))
2 over the training set T (1.7)

rmsetst =

√√√√ 1

Ntst

Ntst∑
i=1

(Ȳ (xi)− Y (xi))
2 over the test set (1.8)

where Ȳ (xi) is the predicted and Y (xi) is the actual value of the output variable of
the i-th instance xi (of the training set T in Eq. 1.7 and of the test set in Eq. 1.8), N is
the number of all instances in the training set and Ntst in the test set.
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1.4 Software Packages

We used several software packages while working on this book: the instance se-
lection and neural network library, which we created in C# language (most opera-
tions), RapidMiner, including Information Selection Extension, Weka, Mulan (some
operations) and some other software (very few operations). The main four pack-
ages, including the source code are available on-line by the links on the web page
kordos.com/inst-sel. The webpage contains also the datasets and a lot of de-
tailed experimental results, which are discussed in the book.

1.5 Datasets Used in this Book

To ensure reliable and unbiased results, we used the standard benchmark datasets from
the KEEL Repository [8], as shown in Tables 1.4 and 1.3. The output values in the
regression datasets were standardized in the experiments to enable us to evaluate and
compare the results better. The tables present the properties of the datasets and the
average rmse or classification accuracy obtained in 10 runs of 10-fold cross-validation
with 1-NN, k-NN with optimal k and MLP neural network. The architecture of the
MLP neural networks and the learning algorithms will be presented in detail in the
following chapters. Although also other learning models can be used, it is enough to
show the performance of the three models to present the dataset properties, as the other
models performance is approximately proportional on particular groups of datasets.

The properties of the multi-target datasets are listed in chapter 13, because those
datasets are used only in that chapter. The last column in Table 1.4 contains the stan-
dard deviations of the rmse obtained with optimal k-NN in 10-fold cross-validation.
The standard deviations obtained with 1-NN and with MLP usually do not differ more
than 15%. Also the standard deviations obtained on the compressed data rarely differ
more than 15%. For that reason we will not report them in this book, but this informa-
tion can be found in the additional resources at kordos.com/inst-sel. For the
same reason we usually do not report the results of the statistical significance tests.

As it can bee seen from the tables there are some statistical dependencies between
the accuracy or rmse obtained on the test sets and the optimal k value in the k-NN
algorithm. Higher optimal k corresponds to lower accuracy or higher rmse, this is to
more noisy data. In noisy data the output value of many instances has more random
nature than in high quality data. For that reason we need to average the outputs of
more neighbors to make the random noise at least partially cancel-out, as we expect
that the average value of the random component will tend to some small numbers
as k increases. Using 1-NN algorithm, or even better 3-NN, based on the obtained
rmse we can predict the optimal k value. Moreover, we can also predict, which noise
removal method will be optimal, as will be discussed in the third part of the book.

kordos.com/inst-sel
kordos.com/inst-sel
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Table 1.3. Classification datasets used in the book (obtained from the Keel repository)
and their properties: number of instances, number of attributes, the accuracy obtained
with 1-NN, the optimal k (the k in k-NN that gives the highest accuracy), accuracy
obtained with k-NN with optimal k and with MLP neural network in 10-fold cross-
validation.

Dataset Inst. Attr. classes acc(1-NN) optK acc(k-NN) acc(MLP)
iris 150 4 3 0.9395 3 0.9600 0.9733
sonar 208 60 2 0.8650 1 0.8650 0.7874
glass 214 9 6 0.8922 1 0.8922 0.9435
newthyroid 215 5 3 0.9861 1 0.9861 0.9630
spectfheart 267 44 2 0.7259 17 0.8194 0.7557
heart 270 13 2 0.8960 5 0.9145 0.8957
cleveland 297 13 5 0.8313 3 0.8316 0.8517
haberman 306 3 2 0.6589 15 0.7514 0.6957
bupa 345 6 2 0.7933 1 0.7933 0.8501
ionosphere 351 33 2 0.8743 1 0.8743 0.8946
movement_libr 360 90 15 0.8553 1 0.8553 0.8161
bands 365 19 2 0.7037 1 0.7037 0.6156
monk-2 432 6 2 0.9907 5 0.9930 1.0000
led7digit 500 7 10 0.6314 35 0.7535 0.7222
wdbc 569 30 2 0.9473 5 0.9701 0.9649
balance 625 4 3 0.7707 7 0.8797 0.9278
wisconsin 683 9 2 0.9575 9 0.9677 0.9559
pima 768 8 2 0.7042 25 0.7524 0.7394
mammograph 830 5 2 0.8263 7 0.8383 0.8636
vehicle 846 18 4 0.6960 5 0.7289 0.7945
yeast 1484 8 10 0.5334 17 0.5954 0.5967
titanic 2201 3 2 0.7391 11 0.7864 0.7814
img. segment. 2310 19 7 0.9662 1 0.9662 0.8104
spambase 4597 57 2 1.0000 1 1.0000 1.0000
banana 5300 2 2 0.8732 7 0.8953 0.7450
phoneme 5404 5 2 0.9063 1 0.9063 0.8466
page-blocks 5472 10 5 0.9788 1 0.9788 0.9740
texture 5500 40 11 0.9889 1 0.9889 0.9869
satimage 6435 36 6 0.9304 1 0.9304 0.9026
marketing 6876 13 9 0.5315 11 0.5356 0.5668
thyroid 7200 21 3 0.9579 1 0.9579 0.9890
ring 7400 20 2 0.7509 3 0.7512 0.9012
twonorm 7400 20 2 0.9753 1 0.9753 0.9953
coil2000 9822 85 2 0.8961 1 0.9546 0.7789
penbased 10992 16 10 0.9938 1 0.9938 0.9560
magic 19020 10 2 0.8192 15 0.8411 0.8607
letter 20000 16 26 0.9546 1 0.9546 0.9632
shuttle 57999 9 7 0.9992 1 0.9992 0.9991
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Table 1.4. Regression datasets used in the book (obtained from the Keel repository)
and their properties: number of instances, number of attributes, the rmse obtained
with 1-NN, the optimal k (the k in k-NN that gives the lowest rmse), rmse obtained
with k-NN with optimal k and with MLP neural network and the standard deviation
of rmse in 10-fold cross-validation with optimal k k-NN.

Dataset Inst. Attr. r0(1-NN) optK r0(k-NN) r0(MLP) std(k-NN)
machineCPU 209 6 0.351 1 0.351 0.348 0.158
baseball 337 16 0.727 7 0.584 0.626 0.098
dee 365 6 0.555 7 0.424 0.407 0.052
autoMPG8 392 7 0.428 6 0.364 0.354 0.068
autoMPG6 392 5 0.407 4 0.366 0.357 0.066
ele-1 495 2 0.689 11 0.584 0.530 0.071
forestFires 517 12 1.547 11 0.864 0.735 0.651
stock 950 9 0.112 3 0.105 0.178 0.011
steel 960 12 0.348 4 0.323 0.225 0.086
laser 993 4 0.231 3 0.204 0.164 0.012
concrete 1030 8 0.533 4 0.521 0.379 0.041
treasury 1049 15 0.069 3 0.058 0.074 0.011
mortgage 1049 15 0.054 2 0.045 0.055 0.008
friedman 1200 5 0.462 7 0.340 0.318 0.021
wizmir 1461 9 0.230 7 0.178 0.085 0.021
wankara 1609 9 0.225 9 0.167 0.097 0.011
plastic 1650 2 0.617 30 0.468 0.435 0.016
quake 2178 3 1.344 50 1.025 1.000 0.040
anacalt 4052 7 0.227 2 0.212 0.201 0.075
abalone 4177 8 0.914 13 0.702 0.651 0.033
delta-ail 7128 5 0.716 17 0.560 0.552 0.043
puma32h 8191 32 1.212 21 0.895 0.338 0.022
compactiv 8192 21 0.254 2 0.231 0.152 0.048
delta-elv 9516 6 0.828 35 0.610 0.599 0.019
tic 9822 85 1.366 90 1.015 1.017 0.039
ailerons 13750 40 0.657 10 0.503 0.402 0.008
pole 14998 26 0.244 4 0.214 0.255 0.010
elevators 16598 18 0.686 8 0.559 0.344 0.023
california 20640 8 0.654 9 0.527 0.532 0.011
house 22784 16 0.872 11 0.687 0.710 0.030
mv 40767 10 0.210 9 0.140 0.055 0.002



Chapter 2
Instance Selection in Classification Tasks

Abstract We shortly present several instance selection algorithms for classification
tasks. Then we discuss the problem of choosing the prediction model inside the in-
stance selection algorithm. This model is in most cases k-NN but sometimes other
models are preferred. We discuss also the computational complexity of instance selec-
tion algorithms and the possible ways of limiting it.

2.1 Introduction

Different families of instance selection methods use different approaches to that prob-
lem. We call the group of instance selection algorithms considered in this part of the
book "similarity-based methods", because they use some similarity measures between
the instances. The measures can be based on the distances calculated by the k nea-
rest neighbor algorithm (k-NN) or the positions on Voronoi cells and they are used to
assess which instances can be removed as noisy or redundant.

The two most popular instance selection algorithms are probably CNN and ENN.
CNN (Condensed Nearest Neighbor) was the first instance selection algorithm deve-
loped by Hart in 1968. ENN (Eddited Nearest Neighgor) is a noise filter proposed in
1978 by Wilson.

These two algorithms were further extended leading to more complex ones like
DROP1-5, IB3, GE, RNGE, ICF, ENRBF2, ELH, ELGrow, Explore and others, which
are described in the next section. A large survey including almost 70 different algo-
rithms of instance selection for classification tasks can be found in [9].

Usually the advantage of the similarity-based instance selection methods is the sim-
plicity of implementation, smaller memory requirements and decoupling the selection
process from a predictive model learning.

37
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On the other hand the problem with classical instance selection algorithms is that
in most cases they are based on certain assumptions and observations made by their
authors about how the data is typically distributed. For example the ENN algorithm
removes the instances misclassified by k-NN considering them noisy. That is not al-
ways true, as they may also be boundary instances required for correct classification
and indeed ENN has the tendency to smooth the class boundaries. There are also other
assumptions in other algorithms, which are more frequently true than not, but in some
cases they are wrong what leads to sub-optimal results.

Typically a well designed instance selection process first removes noise to increase
prediction accuracy. Then as more instances are removed to condense the data, the
prediction accuracy begins to drop gradually, at the beginning very slowly and then
faster, as shown in Fig. 2.1. However, only some of the instance selection methods
allow us to adjust the degree of data reduction, in others we just get only one position
on the plot.

Fig. 2.1. Typical dependence between the percentage of instances remaining in the
training set after instance selection (retention) and classification accuracy on the test
set of the model trained on the reduced training set. The upper blue line – better in-
stance selection algorithm, the lower red line – poorer instance selection algorithm.

2.2 Review of Selected Similarity-based Instance Selection
Methods

Many similarity-based instance selection algorithms were proposed in the literature.
In the short review we will present only the most popular and most effective ones.

Random selection. It is the simplest instance selection method, which randomly
draws instances from the data set. The selection can be random or stratified to preserve
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class label distribution [10].

CNN - Condensed Nearest Neighbor was proposed by Hart [11]. The purpose of
CNN is to reject these instances, which do not bring any additional information into
the classification process. CNN starts by adding a single randomly selected instance
x1 from the original set T to the set of selected examples S and then tries to classify
all other examples from T using k-NN (for the purpose of the classification S becomes
now the training set and T the test set). If any instance from T is incorrectly classified
it is moved to the selected set T, as it is believed to provide some additional infor-
mation, which was missing in S, thus causing the misclassification of that instance.
CNN is relatively fast and usually achieves an average level of compression. How-
ever, the quality of the solution depends on the level of noise in the data and on the
random order, in which the instances are evaluated. For that reason for all condensa-
tion instance selection algorithms, including CNN it is advised to use a noise filter
instance selection algorithm (e.g. ENN) to remove the noisy instances, before run-
ning them. A similar algorithm to CNN is CA. However, CA generates new instances
by merging two neighborhood instances and placing the new instance in-between the
original ones.

Algorithm 1 CNN algorithm

Require: T
m← |T|;
S← x1;
p← 0;
while |S| > p do
p← |S|
for i = 1 . . .m do
C̄(xi) =kNN(S,xi)
if C̄(xi) 6= C(xi) then
S← S ∪ xi;
T← T \ xi;

end if
end for

end while
return S

ENN - Editted Nearest Neighbor is a noise filter proposed by Wilson [12]. Its pur-
pose is to increase classification accuracy by removing noisy instances from the trai-
ning set, rather than to compress the data. ENN also uses k-NN to predict the class of
each instance and marks the instances for which the predicted class is different than the
real class, as these instances are considered noise. In the next step all marked instances
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get removed from the training set. The compression obtained by ENN is usually very
weak (typically at or below 10% of rejected instances). ENN usually works very well
and is frequently used as the first step before running condensation instance selection
algorithms. It must be clearly stated that the order of running these algorithms is very
important and always the noise filter must be used first. This allows to remove the
false nearest neighbors of the opposite class and false decision boundaries, which are
the crucial concepts used by the condensation instance selection algorithms.

Algorithm 2 ENN algorithm

Require: T
m← |T|;
for i = 1 . . .m do
markedi = 0;
C̄(xi) =kNN(T \ xi,xi);
if C(xi) 6= C̄(xi) then
markedi = 1;

end if
end for
for i = 1 . . .m do

if markedi == 1 then
T = T \ xi;

end if
end for
S← T;
return S

GE - Gabriel Editing proximity graph based algorithm [13]. To determine if an
instance xb is a neighbor of instance xa GE uses the following rule:

∀
a6=b 6=c

D2(xa,xb) > D2(xa,xc) +D2(xb,xc) (2.1)

where D(xa,xb) is the distance in the graph between the two instances xa and xb.
If the two instances are neighbors and the class of xa and all its neighbors is equal,
then xa is marked for removal. As CNN, also GE is sensitive to noise and outliers.
However, GE usually allows to obtain stronger compression.

RNG - Relative Neighbor Graph algorithm [13] works in a similar way as GE,
however it uses another cost function and the function used to evaluate the neighbors
is modified as follows:

∀
a6=b 6=c

D(xa,xb) ≥ max(D(xa,xc), D(xb,xc)) (2.2)
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All-kNN - All-kNN is another version of a repeated ENN algorithm, which repeats
the ENN procedure, each time with a different k value, thus rejecting more instances
[14]. Depending on a given problem its results may be better or worse than those of
the base ENN algorithm.

RENN - Repeated ENN repeats ENN so long until no instance is removed [14]. It
has similar noise reduction properties as the ENN algorithm and depending on a given
problem its results may be better or worse than results of the base ENN algorithm.

Algorithm 3 RENN algorithm

Require: T
flag ← true
while flag do
flag ← false
S̄ =ENN(S,T)
if S̄ 6= S then
flag ← true

end if
end while
return S

IB2 and IB3 - Instance Based Learning was proposed by Aha [15]. The IB2 is
a simplified one pass CNN algorithm. The IB3 additionally evaluates instances ac-
cording to the following formula for the upper and lower bound:

Bound =
p+ z2

/
2n± z

√
p(1− p)/n+ z2

/
4n2

1 + z2
/
n

(2.3)

where n is the number of attempts, p is the accuracy of the attempts, and z is the
confidence level for the instance and p is the frequency, n is the number of processed
instances, and z the confidence level for the frequency of a class. An instance is se-
lected if the lower bound with the confidence level 0.9 is greater than the upper bound
of the frequency of its class label and the instance is rejected if the upper bound of its
accuracy is lower with the confidence level 0.7 than the lower bound of the frequency
of its class. IB3 usually achieves strong compression and is insensitive to noise and
outliers. According to our tests, the results obtained with ENN followed by IB3 were
comparable to that of DROP3 and DROP5, while the execution time was about three
times shorter (Table 2.1).
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ELH - Encoding Length Heuristic was proposed by Cameron Jones [16]. It evalu-
ates the influence of an instance rejection on classification by applying the following
formula:

J(m,n, z) = F (m,n) +m log2(c) + F (x, n−m) + x log2(c− 1) (2.4)

where n and m are numbers of instances in the training set and in the new selected
dataset S respectively, x is the number of wrongly classified instances (using S as the
training set) and F (m,n) is a cost of coding n examples by m examples.

F (m,n) = log∗

 l∑
j=0

n!

j!(n− j)!

 (2.5)

where log∗ is a cumulative sum of positive factors log2. ELH first rejects an instance
and then evaluates the influence of the rejection on the ELH heuristic. If the rejection
does not decrease the value of the heuristic the instance gets finally rejected and the
procedure is repeated with the next instance. ELH achieves strong compression with
usually high accuracy and is insensitive to noise and outliers. Another versions of
ELH are ELGrow and Explore and an algorithm called DEL is a decremental version
of ELH.

MC - Monte-Carlo selection is an extension of random selection [10]. MC repeats
the random selection given number of times and selects the best of the subsets.

RMHC - Random Mutation Hill Climbing is another algorithm based on random
selection [17]. RMHC uses two parameters - the number of selected instances and the
number of iterations.

RMHC encodes the instances into a binary array. To encode a single instance
dlog2(n)e bits are needed, where n is the number of instances in the training set.
Thus c · dlog2(n)e bits are required to encode c instances. The algorithm in each iter-
ation randomly mutates a single bit and checks the accuracy obtained by k-NN using
the current training set. If the mutation improves the accuracy, then the new solution
is kept, if not - RMHC returns to the previous solution. This is repeated the defined
number times. Also the number of selected instances is defined so in this way, we can
directly influence the compression level. RMHC is also insensitive to noise and out-
liers.

DROP. The DROP methods (DROP1 to DROP5) [12] belong to the instance se-
lection algorithms that produce the best results in classification tasks [18, 19]. The
algorithms belong to decremental methods and the rejection decision is taken consi-
dering the nearest neighbors and associates of the given instance. The nearest neigh-
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Algorithm 4 RMHC algorithm

Require: T, numSelected, numIter
m← |T|
st← Bin(l log2m)
st∗ ← SetBit(st, numSelected)
for i = 1 . . .maxit do
S∗ ← GetProto(T, st∗)
tacc← Acc(1NN(S∗,T))
if tacc > acc then
acc← tacc
S← S∗

st← st∗

end if
st∗ ←MutateBit(st)

end for
return S

bors of an instance x are the k instances closest to x. The associates of an instance x
are those instances that have the instance x as one of their k nearest neighbors.

The DROP algorithms work in the following way:

• DROP1 eliminates an instance x, if this does not affect the classification of its
associates.

• DROP2 before starting the selection sorts the instances in descending order by the
distance from the instance to its nearest enemy (an instance from another class). So
first the instances located among the same class instances are processed and later
the instances close to the class boundary.

• DROP3 additionally first applies a noise filter that works like the ENN algorithm,
removing the instances incorrectly classified by k-NN.

• DROP4 applies a modified version of the noise filter, by additionally verifying if
removing an instance does not cause a misclassification of another instance and if
it does, the instance will not be removed.

• DROP5 is similar to DROP3, but instead of using the noise filter, it starts the anal-
ysis from the instances that are closest to the nearest enemies (from those close to
the class boundaries). In this way as a matter of fact the noise filter is applied at the
first stage. However, its computational complexity is still O(n3).

LVQ - Learning Vectors Quantization is a model proposed by Kohonen in [20].
In contrary to all previous algorithms (except CA) LVQ changes the positions of the
prototype vectors during learning and finally they have different values than original
instances of the training set.
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ICF - Iterative Case Filtering [21] is a two-step algorithm. First it applies the ENN
algorithm to remove noisy instances. Then it identifies the local sets. A local set of an
instance xi is a set of all instances which are closer to xi than the nearest neighbor of
xi from a different class, also called nearest enemy. ICF uses local sets to create two
sets of instances: coverage and reachability, in a similar way, as the nearest neighbor
and associates used in DROP algorithms. The coverage of an instance is its local set,
which includes all instances that are closer to the instance than its closest enemy. The
reachability of an instance xi is the set of associates, this is these instances, for which
xi is one of their nearest neighbors. If Reachability(xi) > Coverage(xi) then the
instance xi is removed from T. In this way ICF removes an instance if the information
it carries can be expressed by other instances located around it.

LSBo - Local Set Border Selector presented by Leyva et. al. [22] is also based on
local sets, and it displays some similarities to ICF. This is also a hybrid approach,
which uses a heuristic criterion: the instances close to the boundaries between classes
tend to have greater local sets. LSBo starts from a noise filtering algorithm called
LSSm, which was also presented in [22].

HMNE - Hit Miss Network Editing [23] first constructs a Hit Miss network
(HMN), this is a graph, in which each instance xi is a vertex Vi and each edge con-
nects to the nearest neighbor of each class. Thus the degree of each vertex equals
the number of classes. Each vertex is represented by two counters hit and miss. The
hit counter Hit(Vi) of the nearest neighbor xj is increased if the two instances be-
long to the same class and the miss counter Miss(Vi) if they belong to different
classes. Then an instance is marked for removal when in-degree(Vi) = 0, or when
|Miss(Vi)| ≥ |Hit(Vi)|. If too many instances were marked for removal from one
class, an un-mark process of all instances of that class is carried out. If the number of
classes c > 3 and |Miss(Vi)| < c/2 then all instances that satisfy in-degree(Vi) > 0
are un-marked. If Hit(Vi) > 25% of instances belonging to the class yi also un-mark
is performed. In the last step the algorithm removes all marked instances.

CCIS - Class Conditional Instance Selection [23] consists of two steps. In the first
step the HMN graph is constructed and used by the K-divergences instance scoring
function. The instances with negative or zero score are rejected, then instances with
the highest scores are iteratively selected until the error of the k-NN starts increasing.
In the second step the co called thin-out selection is performed, where only instances
close to the decision boundary are selected. This step further improves compression.

ATISA - Adaptive Threshold-based Instance Selection Algorithm [24]. ATISA1
first applies a noise filter to the dataset and then calculates thresholds for the instances.
Each remaining instance is classified with 1-NN. In the case of an incorrect classifi-
cation, the instance is added to the final set S. In case of a correct classification, it is
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added only if the distance to its nearest neighbor is greater than the threshold of that
neighbor.

The second version of the algorithm (ATISA2) instead of randomly selecting the
instances (as ATISA1 does), considers the distances in decreasing order of the distance
between the instance and its nearest enemy.

ATISA3 calculates the threshold dynamically at each instance selection. This
causes higher reduction rates, as the dynamic threshold update increases the chances
of an instance to be within the coverage area of another instance.

CNNIR - Constraint Nearest Neighbor-Based Instance Reduction [25]. CNNIR
first eliminates noise by removing instances without natural neighbors and then
searches for core instances using a constraint nearest neighbor chain. Core instances
are the most important instances inside the class. The chain consists of three instances:
the root pattern, which is a randomly selected instance xi from the dataset, the sec-
ond pattern, which is the nearest enemy of xi and the nearest neighbor from the same
class. The chain is used to select border instances which can construct a rough deci-
sion boundary. In the next step a specific strategy is used to reduce the border set. In
the last step the selected instances are obtained by merging border and core instances.

Instance Rebelling - Instead of directly selecting instances from the training data
an interesting approach for training k-NN classifier was proposed by Kuncheva in [10],
where preselected instances were relabelled, such that each instance was assigned to
all class labels with appropriate weights describing the support for given label.

Anomaly Detection - The anomaly detection algorithms were originally designed
for unlabeled data. There are a lot of anomaly detection methods and a survey of them
can be found in [26] and the most popular methods based on nearest neighbors include:
k-NN Global Anomaly Score, Local Outlier Factor (LOF), Connectivity based Out-
lier Factor (COF), Local Outlier Probability (LoOP), Influenced Outlierness (INFLO),
Local Correlation Integral (LOCI) [27].

k-NN Global Anomaly Score is probably the most widely used of theses methods.
The anomaly score is either calculated as the average distance dx,n of the k nearest
neighbors or to the distance to the k-th neighbor. The first method is more robust to
noise in data and thus we use this version.

In case of labeled data we need both distances: in the input space dx,n and in the
output space dy,n. The purpose is also the same: to make more outstanding instances
less influence the model training and we also need to adjust the coefficient to local
data density α, which will be discussed in the next chapter. We use Euclidean distance
measure to calculate the distances dy,n and dx,n and as the number of neighbors we
empirically propose to use k = 9. Thus the modified global anomaly score of the n-th
instance can be defined in two ways:
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wout,n = dy,n/dx,n (2.6)

The second possibility to adjust the method to labeled data is to treat the output
value as one of the inputs, however with a different, usually higher user-defined weight
and use the standard definition for unlabeled data.

2.3 Reducing Computational Complexity

The computational complexity of most similarity-based instance selection methods
is between O(n2) and O(n3).That is because finding the nearest neighbors or the
vertices of a graph requires usually O(n2) operations. For large datasets that can be
a real problem.

One solution to this problem is to partition the dataset into several smaller parts and
perform instance selection independently in each part. The downside of this approach
is the possible accuracy loss at the boundaries of the partitions, where some of the
nearest neighbors of some instances may fall into another partition and thus not be
taken into account in the calculations. In regression it may not be a big problem, but in
classification it is and therefore some methods to deal with it were proposed [22, 28].

The locality-sensitive hashing (LSH) is a method for determining similarity be-
tween elements. It makes use of hash functions, which try to assign similar items to
the same bucket with a high probability, and at the same time to decrease the proba-
bility of assigning dissimilar items to the same bucket [18]. LSH is frequently used to
improve the efficiency of nearest neighbors calculation [29]. Thus the first benefit of
LSH for instance selection algorithms is the speeding up of nearest neighbor calcu-
lation, which is performed by most of similarity-based instance selection algorithms.
However, that does not change the complexity of the instance algorithm itself. In [30]
the use of LSH was proposed, not only for the calculation of nearest neighbors, but
also for the core of the instance selection algorithm. The idea was to perform instance
selection within each bucket obtained with LSH. This allowed the instance selection
to obtain linear complexity.

Similar solutions based on clustering will be discussed in the second part of this
book in the context of evolutionary instance selection for regression problems, where
it can not only accelerate the calculations but also improve the results.

2.4 Other Evaluation Models

Many of the instance selection algorithms use k-NN or even originally they used 1-NN
as the evaluation model. However, for obtaining the best results, the evaluation model
should be the same model as the final classifier. For example if the final classifier is
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5-NN, the evaluator within the instance selection algorithm should be also 5-NN, if
some kind of weighted k-NN is used as the final classifier, the same weighed k-NN
should be used as the inner evaluator, if the final model is an MLP neural network,
the inner evaluator should be also an MLP network. That is illustrated in Fig. 2.2,
where k-NN cannot perform proper classification in some conditions, yet for other
methods, as e.g. for decision trees this is not a problem. The downside of using other
inner evaluators than k-NN is that learning other models as many time as the number
of instances in the training set is very time consuming. However, this approach after
some improvements can be used in regression tasks, as will be presented in the next
chapter.

Fig. 2.2. Examples of decision borders that make some instances to be incorrectly
classified by k-NN and which influence also the instance selection, where k-NN is the
inner evaluator. Cross and circle denote instances of two different classes, with two
features f1 and f2 corresponding to the positions in horizontal and vertical directions.

2.5 Comparison of Selected Similarity-based Instance Selection
Methods

Most research in instance selection algorithms done so far was in the area of similarity-
based instance selection algorithms for classification tasks. For that reason we focused
our research on other aspects of instance selection, as instance weighting schemes,
ensembles, regression problems, evolutionary, and embedded methods.

Our contribution in developing the classical instance selection algorithms, which
can be applied for classification tasks included adjusting k-NN Global Anomaly Score
algorithm to labeled data, instance weighting schemes and adjustments of inner eval-
uation models. However, we mostly focused on application of these techniques in re-
gression problems and therefore they are presented in the following chapters. In Table
2.1 we present some experimental results, taking into account also the computational
time of particular algorithms.
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Table 2.1. Average results over the 10 datasets (ionosphere, image segmentation,
magic, thyroid, page-blocks, shuttle, sonar, satellite image, penbased, ring) classifi-
cation accuracy of MLP neural network trained on the set of selected instances, per-
centage of selected instances and execution time relative to CNN time of instance se-
lection process for most popular instance selection algorithms using the RapidMiner
implementation [31, 32]. * stands for user defined compression

Method accuracy %Instances time complexity type
no selection 92.74 100 - - -

GE 90.71 45 130 O(n3) decremental
RNG 86.81 12 10 O(n3) decremental
CNN 86.74 8.0 1.0 O(n3) incremental
IB3 86.56 4.0 3.5 - -

DROP-3 87.13 4.0 14 O(n3) decremental
MC 82-86 3.5-20* 8.0 O(n2) mixed

RHMC 82-86 3.5-20* 8.1 O(n2) mixed
ENN+CNN 87.44 7.1 2.0 - -

IB2 85.12 7.7 0.2 O(n2) incremental
IB3 - - - O(n2log2n) incremental

ENN+IB3 87.15 3.9 4.5 - -
ENN 93.17 90 1.0 - -

Several studies and comparisons of the classical instance selection algorithms for
classification problems can be easily found in literature [19, 33, 3]. Thus there is no
need to repeat these experiments here once again. The general conclusion from those
studies is that there is no single instance selection algorithm, which performs best for
most datasets and for most classifiers. Nevertheless, a group of algorithms that usually
outperform the remaining ones can be determined. In [19] several instance selection
algorithms were evaluated with several predictive models (k-NN, NRBF, FSM, Inc-
Net, SSV, SVM). The authors concluded that "Explore, RMHC, MC, LVQ, DROP2-4
and DEL are the most effective instance selection algorithms. They automatically es-
timate the number of instances for optimal compression of the training set and reach
high accuracy on the unseen data. (...) In the group of noise filters ENN algorithm
came at the top." It is also worth pointing out that O(n3) is the most pessimistic as-
sessment of the complexity of CNN, while in practice it is in most cases much closer
to O(n2). Taking into account that one operation of CNN is relatively fast, it makes
CNN in practice one of the fastest instance selection algorithms.
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2.6 Conclusions

Similarity-based instance selection algorithms for classification tasks are historically
the first group of developed methods. The best known and most widely used instance
selection methods belong to this group. Also most of the research in instance selec-
tion has been focused so far on this group, including several big comparison studies
available in the literature. We started the book from presenting the representatives of
this group first for the complementarity of this work and second, because in further
chapters we describe some new approaches, which are developed based on these meth-
ods. Also we present further some comparisons between similarity-based instance se-
lection algorithms for classification and instance selection algorithms from the other
groups.





Chapter 3
Instance Selection in Regression Tasks

Abstract We discuss methods of instance selection for regression tasks. The first
method uses discretization of the output variable and converts the task to a multi-
class classification. Then an instance selection method for classification is used and
finally the data is converted back to regression problem. The next solution uses a dis-
tance threshold between instances. If two instances are further from each other than
the threshold then they are considered by the instance selection algorithm in the same
way as different class instances. We also shortly review other approaches.

3.1 Introduction

Instance selection for regression tasks is a more complex problem than for classifi-
cation tasks. For a classifier to work correctly only the boundaries between classes
must be precisely determined. In regression tasks there are no classes and thus no
class boundaries, and output value must be properly calculated at each point of the
data space. Thus all the data space is important and not only some selected parts as in
classification. For that reason the dataset compression obtained in classification prob-
lems can be much stronger than in non-linear regression. The next point is that the
prediction result in classification tasks is either binary or there are at most several
different classes, while in regression tasks, the prediction result is continuous, which
correspond to an unlimited number of possible values.

Thus, the standard instance selection approaches designed for classification re-
quire some modifications to make them work with regression problems. We discuss in
this chapter two such modifications: setting a similarity threshold, which replaces the
"same class" concept and performing discretization of the output variable to convert
the problem to a multi-class classification. In the last section we will shortly review
some other possible options presented in literature

51
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We also discuss the problem that in a similar way as in classification tasks, for
obtaining the best results, the evaluation model should be the same model as the final
classifier.

3.2 Threshold-based Instance Selection for Regression Tasks

Since in regression there are no classes, the concept of a class can be replaced by some
threshold distance [34, 35, 30] or probability density function [36]. If the difference
between the real output value Y (xi) of instance xi and the predicted output value
Ȳ (xi) is greater than the threshold θ - the instances can be treated by the instance
selection algorithm the same way as different class instances in classification tasks. If
the distance is smaller than the threshold then as the same class instances.

if (Error = |Y (xi)− Ȳ (xi)| > θ) then (. . . ). (3.1)

where (. . . ) is the consequence of the rule, and it can denote either instance acceptance
or rejection, depending on a given algorithm.

Now the problem is to adjust the threshold θ properly. Two factors should be con-
sidered here: the purpose of instance selection - noise reduction or data condensation
and if for a given purpose the threshold should be constant or variable dependent on
the point in the data space.

Per analogy to classification tasks, if the purpose of selection is to remove noise
then we want to remove the instances, which differ too much from their neighbors and
when the purpose is to reduce the data size, we want to reject the instances that are too
similar to their neighbors, as shown in Fig. 1.1.

However, there are areas of naturally lower and higher diversity in the data space.
In lower diversity areas, even a slight deviation from the value predicted by k-NN
can mean that an instance is an outlier and should be rejected. While in higher di-
versity areas, such deviations can be normal. The experiments confirmed that to ob-
tain the best results as well for noise removal as for data reduction, the threshold
should not be constant, but proportional to the local diversity of the data [34]. For
that purpose, we made the threshold θ proportional to the standard deviation of the
output values of k nearest neighbors of the instance - std(neighborhood(xi)). When
std(neighborhood(xi)) is high, the threshold θ should be less sensitive to the values
of errors as shown in Eq. (3.1). In other cases, when std(neighborhood(xi)) is small,
the threshold θ should also be smaller.

θ = α ∗ std(neighborhood(xi)) (3.2)

For the regression version of the ENN algorithm [37], the threshold θ should be
relative large, as this algorithm is a noise filter. For the compression purpose a point
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very similar to the neighbors can be rejected as it does not bring any useful informa-
tion, so for the regression version of the condensation instance selection algorithms,
the threshold θ should be small.

Based on the experiments, we can recommend α = 5.0 for noise reduction and
α = 0.2 for data condensation as a good starting point, which can be used unless there
are some special requirements. By adjusting the α parameter we can make the instance
selection stronger or weaker. This is an additional advantage of this approach.

The pseudo-code of threshold-based regression ENN (T-ENN) is shown in Al-
gorithm 5. T-ENN iterates over the instances of the training set and in each itera-
tion one instance xi is examined, so it is temporally removed from the training set
and added to the one element test set (leave-one-out). This iteration is the same as
in the standard ENN for classification tasks. Model is the method used for predic-
tion (any regression algorithm can be used), Y (xi) is the actual target value of in-
stance xi, Model ((T, neighborhood(xi)) \ xi,xi) is the predicted value of the tar-
get output given by the model trained on dataset T without xi and neighborhood(xi)
contains k nearest neighbors of the instance xi. The threshold θ is a product of
std(neighborhood(xi)) and α. The parameter α is given as input to the algorithm.
The remaining training set (T\xi) is used to predict the output value Y (xi) of the
instance xi with the model. If the error (the difference between the predicted value
Ȳ (xi) and the actual value Y (xi) is greater than the threshold θ, the instance xi is
marked for rejection. In the next iteration the instance xi is returned to the original
dataset T and the procedure is subsequently repeated with all the other instances. The
selected dataset S consists of the instances, which were not marked for rejection.

The pseudo-code of threshold-based regression CNN (T-CNN) is presented in Al-
gorithm 6. The purpose of T-CNN is to compress the dataset. T-CNN uses a threshold
θ defined in the same way as in T-ENN , but the α parameter is much lower, typically
α=0.2. As CNN for classification, T-CNN starts from one randomly selected instance.
In each iteration when difference between the predicted output value Ȳ (xi) and the
real value Y (xi) is greater than θ the instance is added to the selected set S. Gener-
ally, lower α (and consequently lower θ) in T-CNN leads to the acceptance of more
instances.

This approach can also be introduced into other instance selection algorithms.
Based on our proposal, in [38] the authors adapted DROP2 and DROP3 to regression
tasks using the same concept of threshold as we presented. They also considered the
error accumulation approach (comparing the accumulated error that occurs when an
instance is selected and when it is rejected), but the threshold based approach worked
better.
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Algorithm 5 T-ENN algorithm

Require: T, α
m← |T|;
for i = 1 . . .m do
markedi = 0;
Ȳ (xi) = Model ((T,neighborhood(xi)) \ xi,xi);
θ = α · std(neighborhood(xi))
if |Y (xi)− Ȳ (xi)| > θ then
markedi = 1;

end if
end for
for i = 1 . . .m do

if markedi == 1 then
T = T \ xi;

end if
end for
S← T
return S

Algorithm 6 T-CNN algorithm

Require: T, α
m← |T|;
S← x1;
p← 0;
while |S| > p do
p← |P|
for i = 1 . . .m do
Ȳ (xi) =Model((S,neighborhood(xi))xi);
θ = α · std(neighborhood(xi))
if |Y (xi)− Ȳ (xi)| > θ then
S← S ∪ xi;
T← T \ xi;

end if
end for

end while
return S
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3.3 Discretization-based Instance Selection for Regression Tasks

Another option to adjust instance selection algorithms for classification tasks to re-
gression problems is to perform discretization and convert the regression problem
to a multi-class classification task [39, 38]. This allows to directly use the standard
instance selection algorithms for classification tasks. The first step in the process is
the output variable discretization. In this way the problem is transposed into a clas-
sification task. Then the instance selection is performed using the instance selection
algorithms for classification tasks and finally the numerical values of the output va-
riable of the selected instances are restored. This methodology, in a similar way as the
threshold based approach, can be considered a kind of meta-algorithm as it allows to
use many instance selection methods for classification, which were presented in the
previous chapter.

The whole process consists of the following steps:

1. Discretize the output value of instances in the dataset T.
2. Use an instance selection algorithm for classification to the discretized dataset to

obtain the selected set S.
3. Restore the original numerical output values of instances in the selected set S.

Proper discretization is a very important point in this method, because it determines
the boundaries between classes and the boundaries determine particular instance se-
lection or rejection. There are two main categories of discretization algorithms: su-
pervised (the class value is taken into account) and unsupervised or class-blind (the
class value is not considered). In this case only the unsupervised algorithms can be
used, because in the original data there are no classes and the discretization refers to
the output variable. Two frequently used unsupervised discretization algorithms are
equal-frequency and equal-width methods. We used the equal-width method either
with a constant number of 10 bins or with different number of bins for noise reduction
and data compression or with the optimized number of bins using the method of the
estimated entropy, where different number of bins up to a maximum number b are
tested and the number, which results with the lowest entropy is finally selected.

3.4 Data Partitioning

As it was already mentioned, in regression problems the value of each point in the
data space needs to be determined, unlike in classification, where only the points de-
termining the boundaries between classes matters. For that reason it is possible to split
the dataset into several clusters and predict the output of an instance x by learning the
model only on this cluster to which the instance belongs. There may be still a problem
if the instance is very close to the cluster boundaries, so that some of its neighbors
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belong to a different cluster and the model is not learned on that data. Fig. 11.4 shows
the data that has to be evaluated by k-NN to determine the selection or rejection of
all instances. This figure assumes that all the clusters are of equal size, what does not
have to be always satisfied, that however does not change the idea. After performing
the clustering, which has a linear computational complexity, we have to calculate only
several small distance matrices (marked in orange) for k-NN (which have quadratic
complexity), instead of one big matrix. To include in the training set the boundary
instances from the adjacent clusters (marked in yellow in Fig. 11.4), we have to cal-
culated some more distances, but still much fewer that without the partitioning. If we
use a different model than k-NN to evaluate the instance, we also have to train this
model each time only on the instances marked either only in orange or in both orange
and yellow.

The idea of data partitioning is discussed in more detail in chapter 10 in the second
part of the book, while discussing evolutionary instance selection, as in that case it has
even more benefits.

3.5 Experimental Evaluation

The purpose of the presented experiments it to verify the following statements:

1. The best results can be obtained when the same evaluation model is used inside the
instance selection process and as the final predictor.

2. An MLP neural network used as the inner evaluator inside the instance selection
process without loss of accuracy can be trained only on a limited number of in-
stances - those instances that are the closest neighbors of the point of interest.

3. Variable Θ parameter improves the results in comparison to constant Θ.

In this section we present only the results obtained with threshold-based instance
selection for regression tasks. The results obtained with discretization-based approach
will be presented and compared with the threshold-based approach in the next chapter.

In regression tasks, as in classification tasks, the best results can be obtained if the
inner evaluation model is the same as the final predictor model. However, in regression
the computational cost of using other models than k-NN does not have to be so high,
because the models can be trained only on the part of the dataset that is close to the
current instance of interest. That is because the instances that are far from the current
instance have little or no impact on its predicted value.

This allowed us to successfully use an MLP neural network as the inner evaluation
model of the T-ENN and T-CNN algorithms, where the final predictor was also an
MLP neural network.

We used the following inner evaluation models to predict the output value of the
instances inside the instance selection algorithm:
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• k-NN with optimal k for each dataset (Ek, C, ECk in Tables 3.1 and 3.2)
• MLP network trained on the entire available training data within one validation of

the cross-validation process (EM1, CM1, ECM1 in Tables 3.1 and 3.2)
• MLP network trained on about 30 percent of the training instances, which were

closest to the considered instance (EM.3, CM.3, ECM.3 in Tables 3.1 and 3.2)
• MLP network trained on about 10 percent of the training instances, which were

closest to the considered instance (EM.1, CM.1, ECM.1 in Tables 3.1 and 3.2)

However, since T-CNN is an incremental algorithm, there were too few instances
at the begging of the optimization to train an MLP network (the process starts from
a single instance), so k-NN (with k=1, as there was a single instance selected at the
very beginning) was used as long as there were fewer than 10 instances selected.

Both MLP networks in the experiments (the network used for instance selection and
the network used for the final prediction) had one hidden layer with sigmoid activation
function and the number of hidden neurons was rounded to 50% of the number of
attributes, but no less than 3. Both networks (the inner evaluator and the final predictor)
were trained with the Rprop algorithm for 150 training cycles with standard Rprop
parameters.

Table 3.1. Experimental results: relative rmse (as % of rmse without instance se-
lection) for instance selection in regression tasks with T-ENN, T-CNN and T-ENN +
T-CNN: with inner evaluation algorithm optimal-k k-NN and MLP trained on 100%,
30% and 10% on the training dataset. Prediction algorithm: MLP neural network. Ek:
T-ENN with inner k-NN, EM1: T-ENN with inner MLP trained on 100% instances,
EM.3: T-ENN with inner MLP trained on 30% instances, EM.1: T-ENN with inner
MLP trained on 10% instances. Ck, CM1, CM.3, CM.1: the same for T-CNN, ECk,
ECM1, ECM.3, ECM.1: the same for T-ENN followed by T-CNN.

dataset Ek EM1 EM.3 EM.1 Ck CM1 CM.3 CM.1 ECk ECM1 ECM.3 ECM.1
autoMPG8 0.989 0.957 0.963 0.987 1.172 1.094 1.073 1.187 1.116 1.095 1.102 1.130
autoMPG6 0.964 0.938 0.950 0.965 1.045 0.963 0.948 1.017 0.970 0.962 0.985 0.963
ele-1 0.942 0.932 0.944 0.956 1.045 1.016 1.029 1.014 0.946 0.930 0.945 0.956
stock 0.992 0.986 0.962 0.994 1.069 0.968 0.950 0.994 1.010 1.001 1.002 0.993
wankara 1.013 1.021 1.025 1.045 1.078 0.990 1.001 1.020 1.048 1.042 1.071 1.067
plastic 1.016 1.011 1.027 1.006 1.045 0.951 0.947 0.969 1.008 1.022 0.997 1.015
quake 1.020 1.021 1.042 0.994 1.141 1.086 1.094 1.111 1.104 1.092 1.123 1.117
anacalt 0.931 0.909 0.921 0.881 1.045 0.934 0.964 0.924 0.926 0.908 0.908 0.921
delta-ail 1.024 1.037 1.036 1.064 1.108 1.029 1.015 1.019 1.082 1.091 1.105 1.112
elevators 1.052 1.045 1.032 1.056 1.160 1.079 1.101 1.057 1.169 1.152 1.131 1.163
california 1.019 0.983 0.974 0.961 1.092 1.022 1.000 1.014 1.059 1.036 1.025 1.061
house 1.046 1.034 1.054 1.017 1.174 1.120 1.145 1.090 1.173 1.182 1.169 1.178
average 1.001 0.989 0.994 0.994 1.098 1.021 1.022 1.035 1.051 1.043 1.047 1.056
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Table 3.2. Experimental results: retention for the same experiments as in table 3.1.

dataset Ek EM1 EM.3 EM.1 Ck CM1 CM.3 CM.1 ECk ECM1 ECM.3 ECM.1
autoMPG8 0.882 0.837 0.828 0.844 0.783 0.723 0.738 0.757 0.695 0.628 0.618 0.605
autoMPG6 0.920 0.875 0.865 0.845 0.904 0.837 0.844 0.813 0.755 0.725 0.705 0.753
ele-1 0.836 0.761 0.735 0.780 0.862 0.762 0.778 0.784 0.700 0.691 0.712 0.718
stock 0.903 0.803 0.787 0.811 0.783 0.721 0.725 0.787 0.737 0.711 0.697 0.705
wankara 0.659 0.636 0.625 0.659 0.776 0.770 0.760 0.755 0.591 0.550 0.541 0.558
plastic 0.820 0.766 0.781 0.752 0.817 0.784 0.808 0.808 0.664 0.600 0.574 0.601
quake 0.810 0.780 0.800 0.793 0.783 0.756 0.772 0.759 0.737 0.707 0.718 0.714
anacalt 0.690 0.650 0.631 0.641 0.909 0.843 0.871 0.813 0.586 0.588 0.597 0.560
delta-ail 0.820 0.826 0.847 0.834 0.920 0.890 0.882 0.882 0.792 0.742 0.715 0.733
elevators 0.670 0.646 0.623 0.628 0.785 0.691 0.676 0.687 0.598 0.551 0.561 0.539
california 0.843 0.766 0.743 0.785 0.903 0.820 0.804 0.801 0.659 0.612 0.620 0.629
house 0.804 0.753 0.741 0.744 0.787 0.735 0.755 0.726 0.643 0.604 0.600 0.631
average 0.805 0.758 0.750 0.760 0.834 0.778 0.784 0.781 0.680 0.643 0.638 0.646

As it can be seen from Tables 3.1 and 3.2, the average values of retention and
rmse are better when the inner evaluation model was the same algorithm as the final
predictor. It is also shown in Fig. 3.1 for easier interpretation.

Fig. 3.1. Average retention (lower is better) and rmse (lower is better) for the tested
methods over all the datasets.
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Fig. 3.2 shows how using the variable Θ parameter (this is Θ = α · std) can
improve the instance selection process: in most cases compression is improved a lot,
while rmse only a little.

Fig. 3.2. Typical dependence between rmse (on the test set) and retention for
instance selection performed with T-ENN + T-CNN . Red: with variable Θ,
Θ = α · std(Y (XS)). Blue: with constant Θ. rmseb is the baseline rmse without
instance selection.

3.6 Other Solutions from Literature

Definitely fewer papers have addressed the problem of instance selection for regres-
sion tasks than for classification tasks. One of the first approaches was presented by
Zhang [40], who proposed a method to select the input vectors while calculating the
output with k-NN.

Guillen et al. [41] proposed the use of mutual information for instance selection
in time series prediction. In the first step the nearest neighbors of a given point were
determined and then instead of using k-NN for the prediction, the mutual information
between that point and each of its neighbors was calculated. If the loss of mutual in-
formation with respect to its neighbors was similar to the instances near the examined
instance, this instance was included in the selected dataset. The method was evaluated
on artificially generated data with one and two input features. The authors of [42, 43]
extended this idea to instance selection in time series prediction by calculating the
mutual information between every instance from the training set and the instance be-



60 3 Instance Selection in Regression Tasks

ing examined. Then the training set was sorted in descending order by this value and
a predefined number of instances were selected.

In [36] a Class Conditional Instance Selection for Regression (CCISR) was pro-
posed and it was derived from the CCIS for classification [23]. CCIS creates two
graphs: one for the nearest neighbors of the same class as a given instance and another
one for other class instances. A scoring function based on the distances in graphs is
applied to evaluate the instances. In CCISR the neighborhood is defined based on the
probability density function of the instances, instead of using the nearest instances to
construct these graphs.

In [44] an algorithm "to decrease the size of the training set for k-NN regression"
(DISKR) was proposed. DISKR first removes the outlier instances and then sorts the
remaining instances by the difference of output values between the instances and their
nearest neighbors. Next, the instances with little contribution to the training error are
successively removed.

In [45] an instance selection method for regression based on recursive data par-
titioning was presented. The algorithm starts with partitioning the input space using
the k-means clustering. If the ratio of the standard deviation to the mean of the group
is less than a threshold, the element closest to the mean of each cluster is marked as
a representative. Otherwise, the algorithm continues to split the leaf recursively.

In [38] an adaptation of DROP2 and DROP3 to regression tasks was presented and
two solutions were proposed: to compare the accumulated error that occurs when an
instance is selected and when it is rejected, and to use the same concept of threshold
as we presented. Since both ideas were used to adapt DROP2 and DROP3 to regres-
sion thus four resultant algorithms were tested. DROP3-RT (Regression-Threshold)
worked definitely best of the four methods and thus we used it in comparison with our
solutions in the experimental section of chapter 5.

3.7 Conclusions

We discussed the problem of instance selection in regression tasks and presented the
threshold-based approach and the discretization-based approach and short review of
some other methods. The following conclusions can be drawn from this chapter:

• In classification tasks the data reduction can usually be much stronger than in re-
gression tasks without affecting the prediction capabilities of the model trained on
the reduced dataset. That is because in classification we need only to determine the
class boundaries and only a few instances are needed for this.

• The threshold-based method usually worked better than the discretization-based
one (it will be demonstrated in chapter 5)

• k-NN is much faster algorithm as the inner evaluator than an MLP neural network.
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• When the final predictor was an MLP network, the MLP as the inner evaluator
produced better results in terms of rmse-compression balance than k-NN. As our
experiments showed, it also holds true for other models and the optimum is ob-
tained if the inner evaluator is the same model as the final predictor. That is however
obtained at the expense of computational time.

• It was usually enough to train the inner evaluator network on 10% of the closest
instances. Only for the smallest datasets it deteriorated the results noticeably. This
enables much faster training of the network, however, before the training the dis-
tance matrix between instances has to be calculated (either exactly or approxi-
mately - see chapter 10) to find the closest instances to each given instance.

• Variable Θ threshold in most cases allowed for definitely stronger reduction of
the number of instances for a given rmse value. However, the minimum rmse
obtained with variable Θ (the maximum noise reduction) was usually only slightly
lower than with constant Θ.

• For regression problems the T-ENN algorithm usually produced better results than
T-CNN . This is also true for the ensembles of instance selection methods, as will
be discussed in chapter 5.

• the CCISR methods [36] and the method of Abdulali [45] use similar concepts to
the threshold-based idea with variable Θ.





Chapter 4
Weighting Schemes in Instance Selection

Abstract In instance selection each instance can get either selected or rejected using
a crisp decision threshold. However, to improve the results we can introduce instance
weighting by assigning each instance a weight reflecting its importance. Moreover,
we can use several other weightings while determining the final instance weights, as
attribute, diversity, distance and outlier to make the final weight optimally reflect given
instance properties.

4.1 Introduction

In a typical instance selection approach we take care about much fewer issues than in
typical classification tasks. Let us consider an example of a multilayer perceptron neu-
ral network (MLP). This network and instance selection approaches embedded into it
are the topic of the third part of the book, but now let us have only a very short look
at this model. First the neural network has o lot of weights connecting the neurons. In
the network learning process the weights are adjusted to make the network optimally
map the input space to the output space. Typically there are hundred of weights for
simple problems up to many thousands for complex ones. Owing to this the network
has enough parameters to reflect in detail the properties of the underlying data. More-
over, many special algorithms were designed to improve the network learning, like
different error functions, weight regularization schema, or incremental architectures
that add new neurons when necessary. Each of these measures was designed to deal
with particular properties of different datasets and what is worth pointing out, most
of the improvements use not binary but real values. Now, when we compare this to
instance selection algorithms, they look much simpler. Usually there is only a binary
output of the process for each instance and the only properties of the data that the al-
gorithms use are the decision boundaries between classes. Most of the other properties
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are ignored in most instance selection algorithms, for example: importance of particu-
lar features and instances in the dataset or local properties of the datasets, as diversity
and distances between the neighbor instances. In this chapter we discuss the way of
including them in the instance selection process. Some approaches to these problems
will be discussed in this chapter and some others in the third part of the book.

We present here the weighting scheme for attribute wattr, distance wdist, diversity
wdiv and outlier wout weights. The final weight w, which expresses each point con-
tribution to the prediction model is obtained by a using the four weights. This can be
illustrated by the symbolic multiplication of the four weights denoted as "*" in Eq.
4.1. The word "symbolic" means here, that the final weight w is not obtained by the
mathematical multiplication, but by considering influence of each weight as discussed
below:

w = wattr ∗ wdist ∗ wdiv ∗ wout (4.1)

When we use for example an MLP neural network as the inner instance selection
model [34], mostly the diversity and outlier weightings are useful, as the network in-
ternally performs the remaining operations. However, the prediction results of k-NN
depend not only on the value of k, but also on the full weighting scheme [46]. Includ-
ing all four weights with k-NN as the inner evaluator allowed us to achieve improve-
ment in performance, while making the whole instance selection process much faster
than with other models.

4.2 Attribute Weighting

Many classifiers and regressors, as neural networks or decision trees perform inter-
nally attribute (feature) weighting, which is one of the core processes of these mod-
els. This obviously improves the prediction results, as less important attributes in the
data have smaller influence on the final model. Thus this seems reasonable that also
instance selection algorithms can take advantage of attribute weighting. As it was dis-
cussed in the previous chapter, for the computational efficiency reason the model that
performs the inner evaluation is usually k-NN, which does not implement any attribute
weighting. If the inner evaluator is a model that performs the attribute weighing inter-
nally, then also the instance selection process indirectly uses it. However, in the case
ok k-NN evaluator an external method for attribute weighting must be added.

The simplest approach to this is to run one of the feature filters on the training data
before running instance selection. Of course feature selection or feature weighting and
instance selection influence mutually each other. That will be discussed in the chapter
on joint feature and instance selection, but now for the sake of simplicity we can omit
this influence, what in most cases will not introduce any noticeable difference (see
chapter 6).
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However, sometimes we are not sure if a given feature should be rejected and a so-
lution to that problem is feature weighting (more important features are assigned larger
weights). Indeed several experiments proved the superiority of feature weighting over
feature selection [47]. One of the simplest feature weightings that can be used is to
make the feature weights proportional to their correlation with the output. The j-th at-
tribute weightwattr,j equals to that attribute correlation or covariance for standardized
data with the output (Eq. 4.2):

wattr,j =
1

N − 1

N∑
i=1

(xij − xj)(yi − y) (4.2)

where wj is the covariance between the attribute xj and the output value y, N is the
number of instances (N equals either the number of instances in the dataset or N = k
if applied locally to the k nearest neighbors) and b is a coefficient (we use b = 0.5).

In theory the globally optimal set of feature weights may be different than the
locally optimal set within the k nearest neighbors of a given point. The global set
can be used to find the k nearest neighbors and the locally optimal set of attributes
to predict the value of the point of interest. Though it is possible to generate such
artificial data that the two sets of weights will be so different that this approach will
be unstable, in our experiments on real-world data the differences were small.

We use Eq. 4.3 to calculate the distance d1 between two vectors x1 and x2:

d1(x1, x2) =

 1∑F
j=1 wattr,j

F∑
j=1

wattr,j(x1j − x2j)p
 1

p

(4.3)

where F is the number of features and p is the exponent in the Minkovsky distance
measure (for p = 2 we have Euclidean distance measure).

4.3 Distance Weighting

Distance weighting is commonly known and used in the so called weighted k-NN and
several approaches of that were proposed [48]. The idea of weighted k-NN is that
the instances that are closer to an instance of interest should have more influence on
the prediction result. We perform distance weighting using the function in Eq. 4.4,
where b is a coefficient and d1(x1, x2) is the distance between two instances x1 and
x2 (which can also be the attribute weighted distance from of Eq. 4.3). The function
is also shown as the brown line (b=0.25) in Fig. 4.1.

wdist(x1, x2) = Exp
(
−b(d1(x1, x2))2

)
(4.4)
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While predicting the output of instance x1, the output of instance x2 will be con-
sidered with the weight wdist(x1, x2).

4.4 Diversity Weighting

Diversity weighting is especially useful for instance selection for regression tasks. It
was already implemented and fully analyzed in chapter 3 as the variable Θ threshold,
where we proposed to make Θ proportional to the standard deviation of the output
of k nearest neighbors of the point of interest Θ = α · std (Y (XS)), where α was
a coefficient.

4.5 Outlier Weighting

In outlier weighting the instances are assigned weights that express their importance.
That is really similar to instance weighting, but when performed for the use of the
inner evaluator inside the instance selection process, we call it "outlier weighing" to
distinguish this from instance weighting.

The same approach used previously to the final predictor learning can be also ap-
plied within the instance selection process. If we want to predict an instance output
during the instance selection, then not all neighbors of this instance should have the
same influence on the prediction, as some of the neighbors may be outliers and their
influence should be limited to same smaller values or even to zero. In this case the
instance selection must be run in two passes. In the first pass the outliers are detected
and assigned a weight proportional to the probability that a given instance is an outlier,
as described in the previous chapter. In the second pass the evaluation model inside the
instance selection process predicts the instances output taking into account the weights
assigned to their neighbors. Thus the more noisy neighbors have less influence on the
decision of selecting or rejecting the current instance in a case of binary instance selec-
tion or on assigning a weight to this instance in case of instance weighting. Examples
of the outlier weighting functions are shown in Eq. 4.5 and in Fig. 4.1.

wout = (Y (xi)− Ȳ (xi))
2 · Exp(−a(Y (xi)− Ȳ (xi))

2) (4.5)
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Fig. 4.1. k-NN distance weighting function from Eq. 4.4 (b=0.25) and outlier weight-
ing functions for a = 0.25, 0.50, 1.0.

4.6 Conclusions

In most cases it is a good practice to use feature weighting with k-NN. The improve-
ment due to feature weighting is very significant especially if the final predictive model
is different than k-NN. The other weightings added to k-NN (distance and outlier
weighting) and to T-ENN (diversity weighting) also improve instance selection results.
Outlier weighting with the exponential function (Fig. 4.1) brings some improvement
to k-NN and to T-ENN based on k-NN, but the improvement is relatively small. On
the other hand, as will be discussed in the third part of the book, the outlier weighting
applied in an analogical way to the MLP network error function performs really very
well on noisy data, allowing for obtaining much lower prediction errors. Diversity
weighting (variable Θ) applied to T-ENN reduces the errors of the final predictor and
still more reduces the number of selected instances. In our tests, on average the lowest
rmse in the experimental evaluation was obtained when rejecting about 10-15% of
instances from the training set without diversity weighting. With diversity weighting
the obtained compression for the minimal error was about twice stronger and the num-
ber of rejected instanced increased to 20-30% in regression tasks. The final conclusion
is that the distance and outlier weighting with exponential functions brings improve-
ment to the T-ENN algorithm, especially when applied to noisy data. When the inner
evaluator is k-NN (what is true in most cases), then all the four weights are beneficial.
Moreover, as it will be discussed in the third part of the book, outlier weighting allows
for significant noise reduction, when implemented into MLP network learning.





Chapter 5
Ensemble Methods in Instance Selection

Abstract The idea of ensemble methods is to combine several models (which are
either different or learn on different data) to obtain better prediction results than can be
obtained by any single model. Each of the models predict the output and then the final
output of the ensemble is obtained by averaging the predictions of all single models,
what improves the outcome. The same idea can be applied to instance selection with
the hope that the results generated by the ensemble will be better than results of any
single instance selection algorithm. Moreover, using ensembles allows us to adjust
the accuracy-compression balance by using different voting thresholds. In this chapter
we present several solutions and discuss in more detail the bagging instance selection
ensemble.

5.1 Introduction

The idea of ensemble methods is to combine several models (ensemble members) to
obtain higher prediction accuracy or lower rmse than can be obtained by any single
model of the ensemble member [49]. Each of the models predict the output and then
the final output of the ensemble model is obtained by combining the predictions of all
single models.

The idea behind the ensembles is that the combination of several models with lower
accuracy (weak-learners) usually allows achieving better results than that of any single
model [50]. This is because each member of the ensemble performs poorly in some
areas of the data while in other areas it performs very well. Given that poor and good
performance areas are different for particular members, combining the predictions
through a weighted majority vote (classification) or a weighted average (regression)
to produce the final prediction allows for obtaining higher accuracy than that of any
single model.
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However, to ensure this, each of the ensemble members must be as different from
the other members as possible [51]. The diversity can be obtained in two different
ways: by using different type of members and/or by training each member on a dif-
ferent subset of the dataset [52]. The later approach is known as bagging [63]. For
example, if the prediction accuracy of each single member is 75% and the areas where
different members mis-classify the data are different, then averaging their predictions
will give much higher accuracy, possibly even 100%. Although in practice achieving
100% in this case will be very difficult, as in some most complex areas of the data
the percentage of the ensemble members that miss-classify the examples can exceed
50%, but achieving accuracy over 90% is very likely. The key is here that the members
make mistakes for different instances (see Fig. 5.1).

Fig. 5.1. Example of an ensemble classifier. Green color represents a correct predic-
tion for a given instance by a given model and red color a wrong prediction. The
last column represents the final prediction of the ensemble obtained by voting of the
five models. The result row at the bottom contains the number of correctly predicted
instances by each model and by the ensemble.

An important issue is the algorithm used to reach the final decision, so that the
correct decisions are more exposed than the incorrect ones. The decision making al-
gorithms can be divided into trainable and non-trainable or into those that apply to
class labels and to continuous outputs. An in-depth review of ensemble models for
classification is presented in [10], [49], [53] and [54].

Another approach to ensemble learning is boosting, where the instances on which
more models fail the prediction are given more attention. In a frequently used boost-
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ing algorithm AdaBoost [55, 56] the first base model is trained using equal weights
assigned to all instances. In subsequent boosting rounds, the models select the pre-
viously misclassified instances with increased probability, making the ensemble to
better focus on the difficult cases. However, for very noisy data that is not an optimal
approach as the noisy instances are more frequently mis-classified and boosting their
role in the learning process may lead to the situation that the ensemble also learns to
represent the noise in the data.

An example of ensemble method is random forests [57], which consists of decision
trees, where each tree is created using a sample drawn randomly with replacement
(so called bootstrap sample) from the training set. So each tree learns on a different
subset of instances. In addition, each tree can learn also on o different random subset
of features to further differentiate the ensemble members.

Stacking [58] is an ensemble learning technique that combines multiple classifi-
cation or regression models via a meta-classifier or a meta-regressor. The base level
models are trained on the training set, then the meta-model is trained on the outputs
of the base level model as features or jointly on the original features and on the base
model outputs.

Ensemble models find a broad application in machine learning. An AdaBoost en-
semble of neuro-fuzzy classifiers was presented in [59] and [60] including the com-
binations of fuzzy rules generated by different systems. The ensemble methods were
applied also in deep learning [61], including unweighted averaging and majority vo-
ting, the Bayes Optimal Classifier, and the Super Learner, for image recognition tasks.
The use of ensemble models for time series prediction was presented in [62] and se-
veral other papers.

5.2 Bagging of Instance Selection Algorithms

To discus different aspects of ensemble methods in instance selection, in this chapter
we will use instance selection bagging ensembles. However, much of the presented
information is also valid for other instance selection ensemble methods.

The idea of bagging was presented in the previous section. Although in bagging
ensembles the final decision is made by the voting of the ensemble members, where
the vote of each member is equally important, it is not said that for the instance to be
selected it must accumulate at least 50% of votes, but the selection threshold can be a
parameter of the bagging ensemble.

We present some experimental results using the bagging instance selection ensem-
ble for classification and regression tasks [66, 38]. The results for regression tasks
will be presented with more details, as this is a more complex problem and the other
applications of ensemble methods listed in the previous section were designed for
classification tasks.
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Here each individual instance selection algorithm (each member of the ensemble)
gives one vote for each instance in the subset. In case of binary voting a positive vote
indicates that the instance has been selected by the algorithm. In case of real-value
instance weighting, each individual instance selection algorithm returns an array a real
numbers (votes) between 0 and 1 reflecting the importance of particular instances.

Then all the votes that a given instance received from each algorithm are summed.
The importance of an instance in the training set is considered proportional to the sum
of accumulated votes. The bagging of instance selection algorithms performs thus
real-value instance weighting. For that reason even if we want to achieve the instance
weights rather than only the reject/accept decisions, the member algorithms can still
perform binary instance selection.

To make the final decision about each instance selection, in a case of binary se-
lection an accept/reject threshold is defined as a percentage of votes an instance must
accumulate to be included in the final training dataset. Modifying the parameters of
the model we can adjust the trade-off between the prediction accuracy and the dataset
compression. This approach can be used as well for instance selection for classifica-
tion as for regression tasks. In case of the real-value instance weighting, the weight
assigned to each instance is expressed by the percentage of the member algorithms
that voted for that instance.

Fig. 5.2. The process of instance selection bagging.

Thus one advantage of ensembles in instance selection is already obvious: the pos-
sibility to obtain different trade-offs between the number of instances and the predic-
tion accuracy of a model trained on the reduced dataset. Another advantage is that in
a single instance selection algorithm the decision which of two close instances should
be removed frequently depends on the order in which the instances are considered,
which can lead to suboptimal decisions. Instance selection ensembles can greatly re-
duce that problem. The final advantage is that both of the criteria: data compression
and prediction quality can be frequently better addressed by the ensemble than by
a single instance selection method.
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Although, in regression tasks using the threshold-based approach (section 3.2) it
is possible to adjust the error-compression balance also without ensemble methods,
using the ensembles allows obtaining better Pareto-front (lower error and stronger
compression at the same time), as will be shown in the next section. Pareto front is
set of such solutions that for any of the solution no other solution exists that achieves
better values of all the objectives, as shown in Fig. 7.3.

5.3 Experimental Evaluation of Instance Selection Bagging
Ensembles for Classification Tasks

We conducted experiments to assess how particular instance selection methods per-
form in terms of the prediction error obtained at a given compression level and to find
out which methods should be used in which situations. We performed the experiments
on all the datasets from the Keel repository [8], which are shown in Tables 1.3 and 1.4.
Here, because of space limitations, we show the detailed results only for two datasets
in Fig. 5.3.

As it was previously discussed, for classification tasks the instance selection en-
sembles bring an important advantage of the possibility of adjusting the accuracy-
compression trade-off, what is not achievable with single instance selection algo-
rithms, with the exception of very few methods (as the Monte Carlo or RHMC - see
chapter 1), where we define the number of selected instances. Thus, when in this sec-
tion we provide experimental results of the bagging instance selection ensembles used
for classification tasks, we will not use the same Pareto Fronts as in regression tasks,
because that cannot be obtained for a single instance selection algorithm. Instead we
will show how the solutions obtained with different acceptance rates of the ensem-
ble compare to that of a single algorithm. The comparison will allow us to assess how
particular instance selection methods perform in terms of the prediction error obtained
at a given compression level and thus to be able to take better decisions about which
methods should be used in which situations.

For classification tasks we present selected experimental results for the following
instance selection algorithms, which were presented in chapter 2:

• ENN
• CNN
• RNG
• GE

We used the same experimental setup as shown in Fig. 5.2 for instance selection
ensembles for classification and regression tasks, only with different member algo-
rithms.
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(a) WBC

(b) vehicle

Fig. 5.3. Classification accuracy and retention for two selected datasets. Lower val-
ues on both horizontal and higher on vertical axis are better, as this means higher
classification accuracy on the test set and stronger compression of the training set
(compression = 1− retention). Each point represents one selected training set ob-
tained with different voting threshold. The points are connected with lines for each
instance selection algorithm to make them easier to analyze. The arrows show the
results of a single instance selection algorithm.
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5.4 Experimental Evaluation of Instance Selection Bagging
Ensembles for Regression Tasks

In this section we provide experimental results of the bagging instance selection en-
sembles used for regression tasks. Some of the results were originally published in our
work [38].

In instance selection for regression tasks, even a single instance selection algorithm
can give as several solutions along the Pareto front, by changing the threshold Θ or
the parameter α in Eq. 3.2. For that reason we present the results in the form of Pareto
fronts for each algorithm.

For regression tasks we present selected experimental results for the following in-
stance selection algorithms, which were presented in chapter 3:

• T-ENN : threshold-based ENN.
• T-CNN : threshold-based CNN.
• D-ENN: discretization-based ENN.
• D-CNN: discretization-based CNN.
• TE-ENN: ensemble of threshold-based ENN.
• TE-CNN: ensemble of threshold-based CNN.
• DE-ENN: ensemble of discretization-based ENN.
• DE-CNN: ensemble of discretization-based CNN.

From the experimental evaluation, we obtained Pareto fronts for each dataset and
each instance selection method. In the experiments we were modifying various pa-
rameters of the processes (e.g. the number of discretization bins, or the value of α for
calculating the threshold) to see how this influences the instance selection results.

The trade-off between rmse and compression for particular points was adjusted
by some parameters of the instance selection methods or by the number of ensemble
members that had to vote for a given instance to make it finally selected. Ranking of
the methods over all the datasets allows to draw conclusions about the properties and
the efficiency of each evaluated instance selection method.

The discretization method and the threshold method of instance selection for re-
gression tasks used in the ensembles were described in chapter 3. Because the inner
evaluation algorithm was k-NN, so the process must start from input (attribute) stan-
dardization to obtain reliable calculation of the distances between instances. The re-
sults presented here were obtained in a 10-fold cross-validation. The testing part of
the process contained a bagging inside, and each time one of the evaluated instance
selection algorithms was used to build the bagging ensemble. In the the testing part
for non-ensemble methods, one of the instance selection algorithms was directly used.

The bagging ensembles used in our experiments consisted of 30 members, each
of them was an instance selection algorithm which operated on a different subset of
the training dataset. Each subset was created by randomly drawing instances without
replacement from the training set. The number of instances in the subset was 80%
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of the instances in the training set. An instance was finally accepted if at least z%
of the bagging members accepted the instance, otherwise it was rejected. Changing
the z parameter, we can change the behavior of the ensemble so that it prefers rather
small resultant datasets (high compression), when z is close to 10%, or it prefers high
prediction accuracy, for higher values of z, as 90%.

The experiments were performed with various values of the following parameters
of the algorithms:

• Threshold controlled by α: from 0.1 to 1 in steps of 0.1 (for threshold-based in-
stance selection).

• Maximum number of bins: from 5 to 15 in steps of 1 (for discretization-based
instance selection).

• Percentage of votes to select an instance z: from 10% to 90% in steps of 10% for
the ensembles.

After the instances were selected, they were used as the training set to predict the
output of the test set using k-NN with different k values. Here we present the re-
sults with the optimal k, including the Pareto front obtained for several representa-
tive datasets. Horizontal axes show the retention rate with larger values representing
weaker compression. Vertical axes show prediction rmse, with larger values repre-
senting higher error.Baseline indicates the rmse obtained without instance selection
with the optimal k. As in the experiments presented in previous chapters, it was most
much easier to improve the results where the final model was 1-NN.

As it was already discussed, we cannot expect such a strong compression, as in
classification tasks, but we can at least expect that the ensemble methods will produce
better position on a Pareto front than the single instance selection algorithms, and as
the results showed it is really the case.

As it can be seen in Fig. 5.4 and 5.5, the T-CNN and D-CNN algorithms in regres-
sion problems could successfully remove usually no more than 20% of the instances
without causing a noticeable error increase. In the case of T-ENN and D-ENN, which
remove outliers, the reduction rate in classification and regression can be comparable,
because it depends on the amount of noise in the data and not on the prediction task.
Thus on average in classification CNN removes more instances than ENN, while in re-
gression, there is no such a rule and it strongly depends on the properties of particular
datasets.

Fig. 5.6 and Table 5.1 show the average results over all the datasets as the value of
the objective fitness function F :

F = c ·R2 + (1− c) · compression (5.1)

for particular c, where c is a parameter (c ∈ [0, 1]) that allows trade-off balancing
between data size reduction and prediction error. The objective function F should
take as high values as possible. Its both components: R2 and compression can take
values between 0 and 1. The reason that we use here the coefficient of determination
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Fig. 5.4. rmse and retention for two selected datasets. Lower values on both axes
are better, as this means lower rmse on the test set and stronger compression on the
training set (compression = 1 − retention). Each point represents the result of
one set of parameters. The points are connected with lines for each instance selection
algorithm to make them easier to analyze.
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Fig. 5.5. rmse and retention for two selected datasets. Lower values on both axes
are better, as this means lower rmse on the test set and stronger compression on the
training set (compression = 1 − retention). Each point represents the result of
one set of parameters. The points are connected with lines for each instance selection
algorithm to make them easier to analyze.
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Fig. 5.6. Comparison of the instance selection algorithms: average value over all tested
datasets of the criterion function F = c/rmse+(1−c)·retention for different values
of the parameter c. (source: our work [38].)

R2 and not rmse is because R2 is limited to the interval between 0 and 1, and thus is
easier to compare the results over many datasets in ranking systems.

Table 5.1. Comparison of ensemble vs corresponding non-ensemble instance selection
methods; number of times a given performed better by achieving higher score in the
objective function F = c ·R2 + (1− c) · compression for a given c parameter.

Algorithm c=0.3 c=0.5 c=0.7 c=0.8 c=0.9 c=1.0
TE-ENN vs. T-ENN 22 / 4 18 / 8 17 / 9 16 / 10 13 / 13 22 / 4
TE-CNN vs. T-CNN 26 / 0 25 / 1 25 / 1 23 / 3 21 / 5 25 / 1
DE-ENN vs. D-ENN 22 / 4 22 / 4 15 / 11 15 / 11 16 / 10 24 / 2
DE-CNN vs. D-CNN 26 / 0 25 / 1 25 / 1 24 / 2 24 / 2 25 / 1

Fig. 5.6 shows the ranking of all algorithms based on their objective (fitness) func-
tion for c values within the interval [0, 1]. Fig. 5.6 shows that on average the ensemble
methods performed better than the individual methods for all the c values. What is
also interesting here, that for some datasets very strong compression can be obtained
without increasing the error.
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5.5 Other Solutions from Literature

Instance selection can be considered a two-class classification problem, where the two
classes are "select" and "reject". Thus the idea of ensemble methods can also be ap-
plied here. However, the difference is that in instance selection we do not now directly
the proper decision (so we cannot check the results in cross-validation process). We
can check how a given subset of selected instances influences prediction of a particular
model. Several ensemble methods were proposed for instance selection. First we will
shortly review these solutions and then we will discuss the problem in-depth using the
bagging instance selection ensemble. Below we present examples of other instance
selection ensemble methods that can be found in literature.

Feature Bagging. Feature Bagging works in a similar way to bagging. However,
here each ensemble members is provided with all the instances of the training set,
but a with random subset of features [64]. Also here the decision about each instance
selection/rejection is made by the equal weight voting of the ensemble members and
also here the number of votes an instance has to accumulate to be selected can be ei-
ther 50% of votes, or a user-defined parameter.

Boosting. Boosting starts in a similar way as bagging, by providing random sub-
sets of the training set to particular ensemble members. However, when each instance
class is being predicted by the inner evaluation model withing the instance selection,
the rate of misclassification is recorded. Then the next round of the algorithm is run
and the misclassified instances are more likely to be drawn. Additionally the vote of
each member comes to the final decision with a weight proportional to this member
accuracy. In [29] several boosting methods, as AdaBoost, FloatBoost, MultiBoost and
ReweightBoost, were applied for instance selection.

Additive Noise. Additive Noise was proposed by Marcin Blachnik in [64] where
each set of selected instances is obtained using a base instance selection method and
the dataset for each ensemble member is generated from the training set T by adding
noise to each input instance. All member votes are equally important. The method is
partially based on a similar concept, which was first proposed for classifier ensembles.

Other Ensembles Methods. In [65] an instance selection ensemble that used
democratic vote of classifiers was presented. In this solution, the instances which
were most frequently misclassified get rejected. Instance selection can also be used
to create an ensemble of classifiers, where, instead of using bagging, or boosting, var-
ious instance selection algorithms provide the diversity of data used for training the
classifiers.
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5.6 Conclusions

We discussed bagging ensembles of instance selection methods form classification and
regression tasks. The following main conclusions from the study can be formulated:

• The ensemble methods allow for balancing the accuracy-compression trade-off by
undemocratic voting, even if a single instance selection algorithm used within the
ensemble does not allow for this. In regression this was also true, but not always so
crucial, as the single algorithm could also sometimes adjust the trade-off.

• In classification tasks we were not always able to obtain with an ensemble stronger
compression and higher accuracy at the same time, however in some cases we were
able to improve these two objectives more than the single algorithm.

• In regression problems the ensemble performed on average better than in classifi-
cation in that respect and in most cases we were able to obtain with an ensemble
stronger compression and lower rmse at the same time (see Fig. 5.6).

• A big advantage of using instance selection ensembles for both classification and
regression is that we do not have to carry so much about the algorithm parame-
ters, as an ensemble members do not have to be so well optimized as a standalone
algorithm, as in the process of averaging the answers of particular members the
ensemble will do its job to achieve the best results, as long as the members are
significantly different.





Chapter 6
Joint Feature and Instance Selection

Abstract There are two dimensions of data reduction: selection of features and of
instances. Each of the selections influences the result of the other selection. In this
chapter we discuss various options of performing the selections and try to answer
the question about the best way to performing both of them depending on the data
properties.

6.1 Introduction

Data selection can be performed as feature selection, instance selection, or joint fea-
ture and instance selection. The last option can seem the best as it examines both pos-
sibilities and combines them into the final result. Thus, in this chapter we will present
and discuss some solutions of joint feature and instance selection using similarity-
based methods.

Much more research so far was concentrated on feature selection than on instance
selection and therefore detailed discussion of feature selection methods can be easily
found in literature [67, 68]. As this book is focused on instance selection, we only
shortly outline the bases of feature selection to such an extent that is needed to under-
stand how feature selection can coexist with instance selection.

The approaches to feature selection and instance selection are different. For exam-
ple: a single feature can be assigned some predictive power, while it does not make
much sense to assign predictive power to individual instances. Another example are
wrappers with forward feature selection, which is a reasonable solution, when the
number of features is not so high and when the first feature is selected based on its
predictive power. In instance selection, this approach is not commonly used, because
of the problem with determining the predictive power and because there are usually
much more instances than features and the wrappers methods would be very costly.
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The exception, as will be discussed in the second part of the book, is the evolutio-
nary data selection, where although still some differences exist, instance and feature
selection can use the same framework.

First we will shortly outline the idea of the three main families of feature selec-
tion methods: filters, wrappers and embedded methods. Then we will present some
solutions of joint feature and instance selection with similarity-based methods.

The evolutionary methods of feature selection will be discussed in Part 2 and the
embedded methods in Part 3 of the book in the context of joint feature and instance
selection.

When the expert knowledge is available it can of course be used to make some
preliminary feature selection and then the set of features selected by an expert can be
refined by feature selection methods [69, 70]. It is especially beneficial if the expert
can select the feature set that is commonly understood to specialists in their domain.
However, in this chapter, we do not use the expert’s knowledge, because it would be
understood only by specialists from the given domain.

6.2 Feature Filters

Feature filters use statistical measures to assign weights to individual features. This
allows us to reject features with the lowest weights.

A feature ranking created with the help of a filter is not always optimal because it
has not been verified in practice, but its advantage is simplicity and speed. This is espe-
cially important with huge data sets, where we first need to reduce the dimensionality
so that the data can be further processed.

Some ot the feature filters that can be used for classification are: Information Gain,
Information Gain Ratio, Symmetrical Uncertainty, Chi-square, Inconsistency Crite-
rion, fast correlation based filter (FCBF), Fisher Score, Spectral Feature Selection,
Laplacian Score (LS), Chi squared and filters based on entropy [71].

Some of the feature filters can be used for classification and regression: Minimum
Redundancy, Maximum Relevance, Correlation and Relief.

Feature Filter Example - Correlation Coefficient
After the ranking, we can often remove features that are strongly correlated with

other features. An example is shown in Fig. 6.1 on the left, where the f1 feature is
100% correlated with the f2 feature, but the best prediction (red or green class) gives
the sum of both of these features f1 + f2 (the dividing line is inclined at 45 degree to
each axis).

correlation(f, y) =
cov(f, y)

σfσy
(6.1)
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Fig. 6.1. Explanation to the text about feature ranking and correlation. Colors represent
classes.

covariance(f, y) =
1

N − 1

N∑
i=1

(fi − f̄)(yi − ȳ) (6.2)

where f is the examined feature and y is the output variable. The filter based on cor-
relation coefficients has the disadvantage that it detects only linear relationships be-
tween a given input and output. One method, especially useful in regression problems,
to circumvent this problem is to apply a nonlinear matching of the input to the output
through various input transformations, e.g. squaring, root, logarithm, partial approxi-
mation, etc. and then calculating the correlation coefficient between the transformed
input and output. An alternative is to use Spearman correlation (6.3). Spearman corre-
lation of 1 means that the feature and output value are monotonically related, even if
their relationship is not linear.

spr(f, y) =

∑N
i=1(fi − f̄)(yi − ȳ)∑N

i=1(fi − f̄)2
∑N
i=1(yi − ȳ)2

(6.3)

Feature Filter Example - Information Gain
The information gain criterion IG is defined as the difference between the entropy

before and after the optimal data split on feature f :

IGf = −
C∑
i=1

p(ci) · log(p(ci)) +

B∑
b=1

[
Nb
N

C∑
i=1

p(cbi) · log(p(cbi))] (6.4)

where p(ci) is the probability that an instance belongs to class i and p(cbi) is the prob-
ability that an instance within the bin b belongs to class i. N is the number of all
instances and Nb is the number of instances in bin b, C is the number of classes and
B is the number of bins.



86 6 Joint Feature and Instance Selection

Discussion
A disadvantage of ranking methods is that they do not take into account the inter-

dependencies between features. Sometimes features that have a low correlation with
the output can significantly improve the prediction if they are added to another feature.
An example is provided in Fig. 6.1.

Fig. 6.1 shows some quite common occurrence: generating new features by a linear
combination of existing features (eg f3 = a * f1 + b * f2, here: a = 1 and b = 1), we
can effectively reduce the dimensionality of the data set. One of the most commonly
used methods is Principal Component Analysis (PCA), which generates new features
from existing ones and sorts them according to the amount of information contained
in a given feature. Then we can leave only the most informative of the transformed
features, rejecting the other ones. It often works very well. The disadvantage of this
approach is the fact that new features are difficult to interpret logically, e.g. to interpret
the new feature f = 0.75 * voltage + 0.34 * temperature - 0.25 * pressure. So if we
need to be able to easily understand such a system and simply draw logical rules out
of it, then this is not the recommended way to go.

Experimental Evaluation
The purpose of this evaluation was to select the feature filters that will be used

together with instance selection algorithms to reduce the dataset size. We considered
two criteria: classification accuracy for a given percentage of selected features and
execution time of a given method.

We tested the following feature filters available in RapidMiner: Information Gain,
Information Gain Ratio, Deviation, Chi Squared, Gini Index, Uncertainty, SVM, PCA,
Correlation, Rule, Relief and three wrappers: forward selection, backward selection
and evolutionary selection. Although the backward selection wrapper and evolutionary
selection were able to discover more informative feature subsets, resulting in a bit
higher classification accuracy with the same number of features, their execution time
was between two and four orders of magnitude longer, what in the case of the biggest
data sets was totally impractical for our purposes. The results of the filter evaluation
are presented in Table 6.1 in terms of the average classification accuracy over the
classification datasets obtained in 10-fold cross-validation and the average relative
calculation time. The evaluation was done for a predefined number of features equal
to the nearest integer to 60% and 30% of the original number of features. Based on
the test results, the SVM-based filter produced the best accuracy, but for the further
experiments we choose the second filter in the accuracy ranking: Information Gain,
because the SVM-based filter was over 100 times slower.
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Table 6.1. Average values over the 10 datasets of classification accuracy of neural
networks for the nearest integer of 60% and 30% of features (F60-acc, F30-acc) and
execution time relative to Information Gain time with different feature filter methods
using the RapidMiner implementation.

Method F60-acc F30-acc time
no selection 92.74 92.74 0.0

Information Gain 92.12 91.02 1.0
Information Gain Ratio 92.37 89.80 1.0

Deviation 91.78 88.37 0.2
Chi Squared 91.82 90.48 0.8
Gini Index 92.07 89.52 1.1
Uncertainty 91.82 91.04 1.9

SVM 93.01 91.24 102
PCA 92.51 89.13 0.5

Correlation 89.35 87.40 0.1
Relief 93.02 88.27 245
Rule 92.15 88.44 16

6.3 Feature Wrappers

To remedy the mentioned imperfections of filters, we can use wrappers, although they
have a higher computational effort. Wrappers work together with the learning model.
They use subset of features to train the prediction model. Then the accuracy of the
model is checked on the test set. Next, based on these results, another subset of fea-
tures is tested and the accuracy is recorded again and so on. It is an optimization task
with two criteria: maximization of the prediction quality (classification, regression,
grouping) and minimization of the number of features. We can attach a certain weight
to each of these criteria. In the extreme case, there may be a zero weight assigned
to the number of features. In this way, the selection of features will only be made to
increase the accuracy of the model. The number K of possible combinations of F
features is given by the following equation:

K =

F∑
n=1

(
F

n

)
=

F∑
n=1

(
F !

n!(F − n)!

)
(6.5)

For example for F = 10: K = 1.0E3, for F = 30: K = 1.1E9 for F = 70: K = 1.2E21,
for F = 170:K = 1.5E51. With a number of features above a dozen or so, searching the
entire solution space is practically impossible. Therefore, various search methods are
used, such as best-first search, beam-search, random hill-climbing and even genetic
algorithms.
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For local search based feature wrappers, forward selection and backwards selection
are commonly used. In the first case, we start with a single feature and add further
features that most improve the quality of the model prediction. In the second case,
we start from the full original set of features and remove further features, starting
from theses ones, which if getting removed, will improve the results most. If we care
more about the reduction of features, we can also remove more features even if their
removal worsens the prediction results, but we still remove the features in this order,
which least worsens the prediction results.

Often, the forward selection gives better outcome: greater accuracy of prediction
with fewer features. But not always, because in some cases it does not find the best
configuration if it is expressed by several features, where each of them has weak pre-
dictive properties, but the whole group the features have quite high predictive power.

On the contrary, in instance selection the wrapper approach usually does not make
sense, because there are in most cases much more instances than features and thus the
process would be extremely time consuming.

6.4 Joined Feature and Instance Selection

The purpose of this analysis is to find the optimal way of using feature selection (FS)
together with instance selection (IS). As there are many feature selection methods and
many instance selection algorithms it is impossible to test all possible combinations.
For that reason we decided first to choose one (in our opinion the best) feature selec-
tion method and one (in our opinion the best) instance selection algorithm and test
various possibilities of joining them together for optimal outcome.

Our first intuitive approach was to start from the entire dataset and then reduce
iteratively one feature and several instances then the next feature and several instances
and so on. We tested also many other configurations, such as FS-IS, IS-FS, FS1-IS1-
FS2-IS2, FS1-IS-FS2 and others.

However, the results that we obtained showed something else: noise should be eli-
minated before data condensation. So the first step should be to find the noise. It turned
out that in most datasets the noise was to a significantly greater degree associated with
features than with instances. That is there was higher percentage of noisy or useless
features than noisy instances. On general if a useless feature was more frequently
noisy than a useless instance (which was more frequently redundant, inside instances
of the same class).

Our experiments showed that for typical datasets feature selection (FS) should be
performed prior to instance selection (IS). The before mentioned iterative approach
did not performed much worse, but was much more complex and had much higher
computational cost.

Thus, we can perform efficiently feature selection using all instances, but less effi-
ciently instance selection using all features. Moreover, several feature filters are based
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on some measure of correlation or some variants of information gain. Removing too
many instances can make them work less efficiently. On the other hand most instance
selection methods are based on the distance between the instances. If there are irrele-
vant features, we may not get the optimal distances. One of solutions to that problem
is multiplying the distance component in each feature direction by this feature impor-
tance obtained from some feature ranking (see chapter 4).

The general rule that noise should be removed first and redundancy next is valid
as well for instance selection only as for joint feature and instance selection. That
however depends on the sensibility of the instance selection algorithm to irrelevant or
noisy features. If the algorithm is based on the assessment of instances with k-NN or
other method that uses the instance neighborhood, then the method is very sensible to
irrelevant features. However, if the instance selection is based on some other prediction
model, which performs inner feature selection (e.g. a neural network) then the wrong
order of feature and instance selection is likely to cause less detrimental effect.

There is one more practical issue that using first feature filter to remove irrelevant
features and then an instance selection algorithm is faster than doing this the other
way. That is because most feature filters are much faster than most instance selection
algorithms. For example, let us assume that there are 30 features and 1000 instances
in the dataset and that we use the correlation feature filter. Thus we have to calculate
1000·30·1 partial distances in the correlation feature filter and 1000·499·30 partial dis-
tances in the instance selection algorithm. Thus performing first feature reduction by
50% gives us in total 1000·30·1 + 1000·499·15 = 7.5M operations, while performing
first instance reduction by 50% gives us 1000·499·30 + 500·30·1 = 15M operations.

6.5 Other Solutions from Literature

However, there are also proposition in the literature to use the iterative approach, inde-
pendently on the data properties. Zhang [72] presented a greedy algorithm to perform
simultaneous feature and instance selection. The algorithm started from all the features
and instances being selected. Then the sequential optimization iteratively removed the
least informative features and instances. Once the least informative feature was ob-
tained, the data matrix was updated by removing the row. Then the least informative
instances were obtained and the data matrix was updated by removing the correspond-
ing columns. The process was continued until p features and q instances remained. The
authors presented the experimental results only for two datasets (ORL: 40 classes, 400
instances, 1024 features and COIL: 6 classes, 1500 instances, 241 features).

Also the authors of [73] proposed the FIS (Feature and Instance Selection) algo-
rithm, which performs both selections simultaneously and they applied the method to
text classification. Their FIS considers a set of documents, classified in one of two
classes C and C’, which contain a group of words each and operates in two steps. In
the first step, it searches for a subset of the original vocabulary that contains the words
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that are the best predictors of the given class C. Next, only the documents which con-
tain at least one word from this subset are kept. The second step searches, similarly,
in the resultant dataset for a subset of words that are the best predictors of class C’.
The output of the FIS algorithm contains the two subsets of features over the resulting
documents from the first step.

Souza et. al [74] presented another framework for simultaneous and independent
feature and instance selection, which was also based on the idea similar to coevolution
in the following steps:
Input: Dataset dt, Feature Selection Algorithm fs, Instance Selection Algorithm is,
Evaluation Function ef
Output: Dataset ndt
While(Has Iterations(fs) || Has Iterations(is))

fsss = Next Solution(fs, dt)
isss = Next Solution(is, dt)
eval = Evaluation(ef, dt, fsss, isss)
Update(fs, eval, fsss)
Update(is, eval, isss)

EndWhile
ndt = Create Subset(dt, Best Subset(fs), Best Subset(is))
Return ndt

Some papers also proposed evolutionary optimization of feature and instance se-
lection [75, 76], but we will discuss this issue separately in chapter 12 in the second
part of the book.

6.6 Experimental Evaluation

Experimental evaluation of joint feature and instance selection is presented at the end
of chapter 17, together with the approach embedded into neural networks to enable
better comparison of the two approaches.

6.7 Conclusions

As instance selection and feature selection operate on different dimensions of the
dataset, it is usually a good idea to try both of them together. Although this seems
obvious there were not many publications on that topic and among them we did not
find a method that really joins these two ideas into a single monolith data selection al-
gorithm. Rather all the solutions considered feature and instance selection separately
and rather used some sequential or iterative approach, where the feature and instance
selection algorithms operate interchangeably.
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Chapter 7
Introduction to Evolutionary Optimization

Abstract In the first part of the book we discussed similarity-based instance selec-
tion methods. Their important shortcoming is that we have to define the exact rules
of instance acceptance and rejection. Evolutionary algorithms allow us to solve the
problem without defining any explicit rules. We just run the evolutionary optimization
and the process finds the set of most representative instances. Moreover, the solutions
found in this way are frequently better in terms of accuracy-compression or rmse-
compression trade-off. In this chapter we introduce genetic algorithms, their variants
and operations that will be applied to instance selection problems in the subsequent
chapters.

7.1 Introduction

Evolutionary optimization uses an iterative process in which a pool (population) of in-
dividual solutions is evaluated. Frequently this process is inspired by natural evolution,
but some exceptions can be also found (as FWA [77] or ICA [78]). In evolutionary op-
timization each individual contains a set of parameters that encodes one solution. The
purpose of the optimization is to set the parameters to their optimal values. Each in-
dividual solution is assigned the so called fitness value, which expresses its quality.
The main step of the optimization relies on iterative modification of the parameters
of the individuals (e.g. PSO [79], ICA [78]) or on iterative reproduction and modi-
fication of new population basing on parameters from current population (e.g. FWA
[77], BA [80], and genetic algorithms, which we will use in the following chapters).
Both approaches are designed with a purpose of producing better and better solutions
(in terms of fitness values) as the optimization iteratively progresses. The process is
continued until a termination criterion is met (usually either the predefined number of
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iterations or the predefined fitness of the best individual). Then the parameters of the
best individual are used as the solution of the problem.

Evolutionary Algorithms are stochastic algorithms that attempt to solve problems
by mimicking the processes of Darwinian evolution using selection and reproduction
of candidate solutions. However, there is no clear consensus what the term "Evolu-
tionary Algorithms" represents. One definition says it comprises Genetic Algorithms,
characterized by a binary string representation of the candidate solutions, Evolution
Strategies, which use vectors of real-value numbers as representation and Genetic Pro-
gramming. Some uses the term GAEs (genetic or evolutionary algorithms) and some
other researcher extend the term "genetic algorithms" also to real-value representation.
In this part of the book we will use the term "evolutionary algorithms" to denote the
binary genetic algorithms and their extended version with real-value representation.

Evolutionary algorithms can be applied to many optimization problems, where the
continuous or at least multi-valued measure of the solution quality (fitness) can be
applied. For problems, where the only fitness measure is binary (like decision ma-
king problems) they are not more efficient than random search. Fortunately instance
selection problems belong to the first group.

In this chapter we provide a very short introduction to genetic algorithms, which
is however enough to understand the subsequent chapters on evolutionary instance
selection. The good in-depth description of genetic algorithms can be found in several
books [1, 81].

7.2 Basics of Genetic Algorithms

In genetic algorithms first we generate a pool of random individuals, where each in-
dividual contains a set of parameters that encodes the solution of the problem (e.g.
selected instances from the dataset). Then the process iteratively creates new solu-
tions, which are supposed to be better than the previous ones using the selection and
crossover operators. Let us demonstrate this using a simple example.

Let us assume that the problem is selection of elements from and 8-element set. Let
’1’ mean that a given element is selected and ’0’ that it is not selected. We need also
a measure of how good a particular solution is. The measure is called fitness function.
Let us assume that the optimal solution is

| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |

and that the fitness expresses how many elements are properly selected. Since this is
the optimal solution, all elements are properly selected and its fitness is 8. Now let us
generate a population of size P=4, which will contain four random individuals and let
us calculate their fitness as the number of positions, which are equal to the positions
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of the optimal solution:

A: | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | fitness(A) = 6
B: | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | fitness(B) = 6
C: | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | fitness(C) = 5
D: | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | fitness(D) = 3

Then the genetic algorithm iteratively performs the following operations:

• evaluating the quality (fitness) of the P parents and P children (only parents in the
first iteration) and selecting the best P individuals into the next generation

• creating P children: for each child selecting M parents with probability propor-
tional to their fitness function and creating the child by crossover operator

• applying mutation with some probability by randomly changing single positions in
the chromosome of randomly selected individuals

Algorithm 7 The genetic algorithm
generate initial currentPopulation of P individuals
calculate fitness for currentPopulation individuals
for i=0 . . . numIterations do

apply the crossover operation to generate the newPopulation of P individuals
calculate fitness for newPopulation individuals
if optimal solution found or no further progress then

end process
end if
sort together currentPopulation and newPopulation individuals by fitness
select the best P individuals into currentPopulation
apply the mutation operator

end for

Genetic algorithms are simple to implement, but their behavior is difficult to un-
derstand. In particular it is difficult to understand why they frequently succeed at ge-
nerating solutions of high fitness when applied to practical problems.

The most popular explanation is the building block hypothesis, which says that
genetic algorithms perform adaptation by identifying and recombining "building
blocks", i.e. low order, low defining-length schemata with above average fitness. Gold-
berg [1] describes the heuristic as follows: "Short, low order, and highly fit schemata
are sampled, recombined [crossed over], and resampled to form strings of potentially
higher fitness. In a way, by working with these particular schemata [the building
blocks], we have reduced the complexity of our problem; instead of building high-
performance strings by trying every conceivable combination, we construct better and
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better strings from the best partial solutions of past samplings. Because highly fit
schemata of low defining length and low order play such an important role in the
action of genetic algorithms, we have already given them a special name: building
blocks. Just as a child creates magnificent fortresses through the arrangement of simple
blocks of wood, so does a genetic algorithm seek near optimal performance through
the juxtaposition of short, low-order, high-performance schemata, or building blocks."
Most authors agree with that theory, although a few questioned the role of the building
blocks.

The main advantage of genetic algorithms and other evolutionary optimization
methods is their ability to exploit the data space in a much broader area than tradi-
tional methods based on gradient or search heuristics and thus to find better solutions.
Moreover, the reasonably good solution is frequently reached only after evaluating
a very little number of potential solutions. For example, if we want to select the op-
timal instances from a dataset of 1000 instances there will be over 10e300 possible
subsets. Genetic algorithm can usually find the best solution or a solution enough
close to the best assessing no more than 10e5 possible subsets. Although the solution
is not guarantied to be the best possible, for practical purposes it can be so close to the
best one that it will make no difference.

7.3 Fitness Function and Selection

There are two basic selection methods: tournament selection and roulette-wheel se-
lection. In tournament selection we select randomly some number c of candidates for
each parent and then choose the fittest one from them. In this example we will have
two parents and two random candidate for each parent. Let us assume that we have
randomly selected the following candidates from the example in the previous section:

A and D for the first parent P1
B and C for the first parent P2

next we choose the fittest candidate for each parent - in this case A (fitness=6) for
P1 and B (fitness=6) for P2. If the number of individuals selected for the tournament
is larger, less fitted individuals have a smaller chance to be selected, so there is a higher
selection pressure, which stronger favors better individuals.

In roulette-wheel selection each individual from the whole population can be se-
lected for a parent with a probability proportional to its fitness function. For this
example the sum of the fitness value for the whole population is 6+6+5+3=20. Then
we generate a random number r from 1 to 20. If r<=6 then individual A is selected,
if 6<=r<=6+6 then B is selected, 6+6<=r<=6+6+5 then C is selected and so on. We
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can say that each individual is given a portion of the roulette wheel proportional to its
fitness. We spin the wheel and we select this individual on which area the wheel stops.

However, the fitness function can be defined in many other ways, for example:

fitness = number_of_matching_positionsv (7.1)

Fig. 7.1. Roulette Wheel Selection. Each individual is given a section of the wheel
proportional to its fitness. We spin the wheel and it stop at a random position pointing
to the selected individual.

To adjust the selection pressure in roulette wheel selection, we must modify the
fitness function. For example, the fitness can be proportional to certain power of
the numbers of correct alleles. There exist some correspondence between the num-
ber c in tournament selection and the power v in roulette wheel selection (Eq. 7.1).
A higher power v roughly corresponds to larger number of candidates c - both dis-
playing stronger preferences towards more fitted individuals.

Sometimes genetic algorithms may converge towards rather local optimum than
the global optimum of the problem. If it happens depends not only on the optimized
problem but also on the shape of the fitness landscape. In particular it can occur if the
convergence of the genetic algorithm is too fast without taking into account other so-
lutions that seem not optimal at a given iteration, but may lead to the global optimum.
This limits the population diversity as some potentially good parts of chromosomes
included in the overall poor individuals can be removed from the population.

The way to address this problem is to keep diverse population of solutions as long
as possible by proper fitness function, selection and mutation. The downside of this is
longer optimization and a good balance must be found.

In general, too flat fitness function (which can be e.g. v=1) can make the process
very long. On the other hand too steep fitness function (e.g. v=5) may eliminate some
less fitted individuals with good chromosome fragments.



98 7 Introduction to Evolutionary Optimization

Fig. 7.2 shows a typical fitness value of the best individuals and average value
of the population in function of the iteration number. As it can be seen, both values
change slower and slower as the optimization progresses and both become closer and
closer to each other. As the first solution, we can start with low c or low v depending
on the selection method in order not to limit the population diversity and when the
process progresses further and the differences between particular individuals decrease,
we increase c or v in order to accelerate the end of the optimization. Thus, it can be
desired to make the selection less steep at the beginning of the optimization to keep the
population diversity and prevent converging to a local optimum and steeper at the final
stage to strongly promote the (only little) better individuals to accelerate the process.

Fig. 7.2. Typical fitness function changes as optimization progresses.

Other possible solution using selection is to apply "niche penalty" or "crowding
distance", where, a group of similar individuals (niche radius) have a penalty term sub-
tracted from their fitness value. This reduces the number of individuals of that group
in subsequent generations, permitting other, less similar individuals to be promoted to
the next generation, even if their original fitness value is lower. Another solution is
to replace part of similar individuals by new randomly generated ones. Still another
solution is to increase the mutation rate, especially within such a group, to introduce
greater diversity.

7.4 Crossover

Using the four individuals from the previous example, we have 4 parents and we want
to generate 4 children. To create each child we need to select randomly two or more
parents with the probability proportional to their fitness and randomly select crossover
points (one or more). In the simplest case we will use two parents and one crossover
point. Now the child will be created by taking the first part of its chromosome - up
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to the crossover points from the first parent and the second part - from the crossover
point till the end from the second parent. Fox example: we randomly selected parent
C and A and a crossover point 3:

parent C: | 0 | 1 || 1 | 0 | 1 | 1 | 0 | 0 | fitness(C) = 4
parent A: | 0 | 0 || 0 | 1 | 0 | 1 | 0 | 1 | fitness(A) = 6
child: | 0 | 1 || 0 | 1 | 0 | 1 | 0 | 1 | fitness(child) = 7

We repeat this selection and crossover operators three more times to generate the
population of four children. Then we have 8 individuals, from those we choose 4 with
the highest fitness, which will enter the next iteration. Because the individuals with
higher fitness have higher probability of becoming parents, each next generation is
characterized by a highest average fitness. We continue this process until we either find
the best solution (if we know the fitness of the best solution) or if we find a solution that
we consider good enough or as the process ceases to improve or when the maximum
predefined number of iterations is reached.

Two parents and one crossover point in long chromosomes make the optimization
unnecessarily too long, as the exchange of genetic material is very slow. Usually more
parents and more crossover points are better [82], but using too many may again slow
down the process, as it will disturb creating the blocks of well matched alleles in the
chromosome.

Algorithm 8 The crossover operation
for i=0 . . . P do

if RandomDouble(0,1) < crossoverProbability then
for c = 0 . . . numCrossoverPoints + 1 do

individual[i][c] = Selection();
crossoverPoint[i][c] = RandomInteger(0,numPositions);

end for
sort crossoverPoint[i];
for c = 1 . . . numCrossoverPoints + 2 do

for d = crossoverPoint[i][c - 1] . . . crossoverPoint[i][c] do
newPopulation[i][d] = currentPopulation[individual[i][c - 1]][d];

end for
end for

end if
end for

For longer chromosomes there are several issues that must be considered to make
the genetic algorithms more effective: the formulation of the fitness function, the size



100 7 Introduction to Evolutionary Optimization

of the population, the population initialization, the number of parents and crossover
points, the mutation operator. That will be discussed in subsequent chapters in relation
to genetic algorithm based instance selection.

7.5 Population Size and Initialization

The population size should big enough to ensure the required population diversity,
because too small size may result in not finding the solution. Too big size is usually
not bad, but the optimization may take too long. For most of the problems consi-
dered in the following chapters the size about 100 individuals is optimal. The simplest
initialization is random. That is each allele is randomly initialized with either 0 or 1
and in the case of real-value optimization by a real random number between 0 and 1.
However, for the purpose of instance selection, more effective initialization schemes
exist. We will discuss both issues: population size and initialization while presenting
the ways of accelerating genetic algorithm based instance selection.

7.6 Mutation

We can imagine such situation, that the optimal value at some position is 1. However,
due to the crossover process after several iteration this value is 0 at each individual.
In this case the mutation operator is useful, as it with some probability randomly
changes a value at a random position of a random individual. There are cases where
the optimization can succeed without the mutation operator. Usually an optimal prob-
ability of mutation rates exists: too low probability makes the process too long and too
high probability may disturb the order built by crossover operations. Moreover, the
mutation rate can be increased gradually during the optimization or unsymmetrical
mutation probabilities can be used, where the chance of switching 0 to 1 is different
than switching 1 to 0. Some examples applied to instance selection will be presented
in the following chapters.

7.7 Elitism and Steady State Genetic Algorithms

There are several options of how we can create the next generation from the child and
parent population. The simplest option is that the whole child population is advanced
to the next generation and the whole parent population is rejected. It can however
happen that some individuals in the parent population are better than any individual
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in the child population and thus it would be worth to preserve them. Here we can use
elitism, where a percentage of the best parents create the elite and are always promoted
to the next generation. Let us assume that 20% of parents are promoted. In this case
we need to generate the number of children which is 80% of the population size. Thus
that approach can be both: faster and more efficient.

Another option is to sort the parent and child population together and select P
(where P is the population size) best individuals to the next generation, no matter if
they come from the parent or child population.

Till now we considered only generational genetic algorithms, where the new ge-
neration at a certain point was replacing the old one. In a single CPU core environ-
ments we can obtain still faster improvement of the population quality if the child
replaces one of the individuals as soon as it is created. It was verified [83, 84, 85]
that the steady state genetic algorithms display faster convergence than generational
ones. The explanation of that fact is that in steady state algorithms, the offspring im-
mediately replaces the worst individual in the population (or the most similar or one
of its parent), what at this moment makes the population better as a whole, while in
generational genetic algorithms we have to wait for that improvement until the next
iteration.

In parallel implementations, not always the solutions with the smallest number of
calculations (as steady state algorithms) are fastest, but those that scale up well. We
will discuss this in chapter 11.

7.8 CHC Genetic Algorithms

There are a lot of genetic algorithm variants. Here we shortly present the CHC algo-
rithm, as it was applied to instance selection by several authors. In CHC [86] genetic
algorithms the parent population is used to generate the intermediate population and
then the best individuals from both population enter the next population. CHC uses
a different crossover (recombination) operation, so called HUX, which exchanges half
of the bits that differ between parents, with the crossover point being randomly chosen.
However, if the selected parents are too similar, the recombination is not performed.
In CHC the mutation is applied after the recombination phase and the mutation is usu-
ally quite strong (up to 35%, comparing with the typical mutation rates of about 1%
in classical generational GA).
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7.9 Cooperative Coevolution

Cooperative coevolution in evolutionary algorithms is a method, which divides a large
problem into smaller subproblems (species) and solves them independently in order
to solve the original large problem. The subproblems are solved by independent sub-
populations, which interact in the cooperative evaluation of each individual of the
subpopulations. The initial fitness of each population member is obtained by com-
bining it with a random members of other populations. In the next and subsequent
iterations, the fitness of each individual from a subpopulation is obtained by combi-
ning it with the best members of all other populations [87]. The problem with the
basic coevolutionary approach is that the algorithm tends to converge too quickly us-
ing only a limited search, thus finding the solutions which are not enough close to
the global optimum. However, later several improvements to deal with the limitations
of basic coevolutionary scheme were introduced [88]. In several works coevolution
was used for simultaneous instance and feature selection, where one subpopulation
encoded instances and the other features, as will be discussed in chapter 12.

7.10 Multi-Objective Evolutionary Algorithms

So far we have considered single-objective genetic algorithms, where there is only one
fitness measure (one objective). For example, in the instance selection problem that
can be a weighted sum of data reduction and prediction accuracy. In multi-objective
algorithms there are multiply fitness measures, as data compression and maximization
of prediction accuracy, which are two independent fitness measures. That allows to
search not only for a single best solution but also for a set of solutions, where each
of them is the best for a certain balance between the objectives. In multi-objective
optimization the aim is in fact to find the Pareto front of non-dominated solutions,
what corresponds to a simultaneous optimization with various weights assigned to
particular objectives [89, 90].

There are two problems with the single-objective approach: we must know which
weights we want to use and if we need several solutions with different weights, then
we need to run the optimization several times: each time to get one solution. Multi-
objective algorithms allow us not to carry about the weights and obtain a set of solu-
tions corresponding to different weights in a single algorithm run.

For the many problems that can be evaluated in terms of multiple criteria (as in-
stance selection), simultaneous consideration of multiple criteria (objectives) can be
done using Multi-Objective approaches. They can be divided into three groups:

1. Scalar approaches. They base on aggregating criteria into a single objective or on
processing one objective at the time. In this group of methods it is usually necessary
to specify a coefficient that ensures a certain balance between the objectives.
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2. Pareto approaches. They base on Pareto front and domination between individuals
([91]). They can be divided into ranking, elitist and diversity maintaining methods
[92].

3. Other approaches. They include other methods, such as methods that are based on
sub-populations (e.g. VEGA [93]).

Fig. 7.3. Examples of domination in population: black circles (A, B, C, D, E) are the
non-dominated individuals in the population - they are situated on the Pareto front
(dotted line). The remaining points are dominated. For example all the gray points are
dominated by the point C.

Solutions based on the Pareto front are among the most commonly used. They do
not require the determination of the coefficients indicating the expected balance be-
tween the objectives. Moreover, the returned result is the front of the non-nominated
individuals (Pareto front) with different trade-offs between objectives. We can say
that the individual S1 dominates individual S2 (with goal of minimization of the ob-
jectives) if: {

obji (S1) ≤ obji (S2) for all i
obji (S1) < obji (S2) for at least one i

(7.2)

where i is the index of objective function (i = 1, ..., O),O is the number of objectives,
obji(...) is the objective function. The examples of domination between individuals
and Pareto front can be seen in Fig. 7.3. For example, in the case of instance selection
the individuals will be the selected training sets, the first objective will be the error of
the prediction and the second objective - the selected data set size.

Several multi-objective evolutionary algorithms have been proposed [94]. The
NSGA-II algorithm is the most frequently used and one of the best for two-objective
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problems and its extension NSGA-III for problems with more than two objectives [95].
Below we shortly present the main ideas of the NSGA-II algorithm and the interested
reader is referred to [94] for more details.

The returned result of the NSGA-II algorithm is the front of the non-nominated
individuals (Pareto front) with different trade-offs between objectives. The NSGA-II
algorithm is presented in the following pseudo-code:

Algorithm 9 NSGA-II

1: Population := initialization(N)
2: evaluation(Population)
3: Front = fast_nondominated_sort(Pop, N)
4: crowding_distance(F)
5: while stop_condition() do
6: Populationchild = ∅
7: for i = 1 to N do
8: parentA = select_parent(Population)
9: parentB = select_parent(Population)

10: child = new_individual(parentA, parentB)
11: Populationchild = Populationchild ∪ child
12: end for
13: evaluation(Populationchild)
14: Population = Population ∪Populationchild

15: Front = fast_nondominated_sort(Population, 2P )
16: crowding_distance(Front)
17: Population = selection(Population,Front)
18: end while
19: return Front {list of non dominated individuals}

Explanation of the above NSGA-II pseudo-code:

1. Initialization of population with P individuals.
2. Evaluation of the population according to the defined objectives.
3. Searching for individual fronts. First, the non-dominated individuals from the po-

pulation are transferred to the first front. Then, next fronts are selected consequently
from remaining individuals. This process performance is optimized by Fast Non-
dominated Sort (for the details see [94]).

4. Calculation of crowding distances. Within each front a crowding distance for each
individual is calculated (for the details see [94]). It determines the distance between
neighboring individuals from a given front and promotes more diverse solutions in
a further selection process.
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5. Reproduction. In this step a new population with P children individuals is created.
For each child a pair of parents is chosen basing on ranking selection (using fronts
values and then crowding distance - individuals with smaller values are chosen).
The child individuals are created using the crossover and mutation operators.

6. Evaluation of the new population according to the proposed criteria.
7. Merging of the populations. In this step new (child) population and the old (parent)

population are merged into one.
8. Searching for individual fronts and calculation of crowding distances for the

merged population.
9. Selection. From the population (with size 2P ) P best individuals are selected and

individuals from successive fronts are added sequentially to the new population. If
the number of individuals of the front is too large (the new population size is higher
than P ) then only the appropriate number of individuals is selected basing on the
crowding distance.

10. Stopping Criterion. In this step a stopping criterion is checked (for example if the
number of iterations reached the specified value). If the criterion is met, the algo-
rithm stops and the first front of non-dominated solutions is returned, otherwise the
algorithm goes back to the step 5.





Chapter 8
Single-Objective Evolutionary Instance Selection

Abstract In evolutionary instance selection the dataset is encoded into the chromo-
some, where each position represents one instance. During the optimization the so-
lutions are assessed using a fitness function, which is a weighted sum of the data
reduction and of the prediction quality of a model learned on the selected set. To limit
the computational cost, we use k-NN as the model that evaluates the prediction quality
inside instance selection algorithm, because it is possible to calculate and sort the dis-
tance matrices only once before the optimization, what makes the solution very fast.
Moreover, several other improvements can be implemented.

8.1 Introduction

Evolutionary algorithms do not make any assumptions about the dataset properties,
but verify experimentally large numbers of different subsets in an intelligent way to
minimize the search space. This can result in better solutions. On the other hand that
is usually achieved at the expense of much higher computational cost. For that reason
we pay special attention to limit the computational cost as far as possible, what is
discussed in section 8.4 and in chapter 11.

In the case of similarity-based instance selection we discussed separately classifi-
cation and regression. However, with evolutionary methods we can take a very similar
approach to instance selection in classification and regression tasks. The core of the
approach can be the same in both cases, only the value of process parameters or some
enhancements can differ. For that reason in this and in the next chapter, we will dis-
cuss jointly the classification and regression tasks and only point out the differences,
where applicable.

107
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8.2 Encoding

The evolutionary instance selection process starts with generating initial random po-
pulation. Each individual in the population represents one training dataset T. Each
position of the individual’s chromosome represents a single instance; 0 at this position
means this instance is rejected and a positive value - it is selected (1 for binary instance
selection and a real number between 0 and 1 for instance weighting). Let us consider
an example, where the dataset consists of 10 instances and the first instance is selected,
the second rejected, the next three instances are selected, next two rejected and the last
three is selected. The representation of this selected subset in the chromosome is:

|1|0|1|1|1|0|0|1|1|1|
In instance weighting, real value weights between 0 and 1 are assigned to each

instance and each individual (each selected dataset S) is encoded as a weight vector
w = {w1, ..., wN}, where N is the size of the weight vector (which equals the num-
ber of instances in the original training set T). The weights express the importance
of a given instance while training the classifier or regressor, as discussed in detail in
chapter 4 in the first part of the book. Binary instance selection is the simplest form,
while on the other hand, implementing instance weighting in regression problems fre-
quently allows for some improvement in prediction quality for noisy data [96, 7].

8.3 The Objectives and Fitness Function

Instance selection is a two-objective task. The first objective is minimization of the
number of instances in the training set (data reduction or compression). The second
objective is maximization of prediction quality. In case of classification tasks the most
popular quality measure of prediction is the percentage of correctly classified instances
(the higher the better) and in regression tasks rmse - root mean square error (the lower
the better), although other measures are also possible.

During the instance selection process the accuracy on the training set acctrn or
rmse on the training set rmsetrn is internally determined with the leave-one-out pro-
cedure, always using the k-NN algorithm as the inner prediction model (the classifier
or regressor inside the instance selection process). In the final evaluation the accuracy
on the test set acctst or rmse on the test set rmsetst can be determined using any
prediction model trained on the reduced training set S. In the experimental section
the final prediction models we used were k-NN with different k parameters and MLP
neural networks and the acctst and rmsetst obtained on the test sets is reported.

The typical definitions of the fitness function for instance selection are:

fitness =
(
α · retention+ (1− α) · (1− acctrn)

)−1
(8.1)
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fitness =
(
α · retention+ (1− α) · rmsetrn

)−1
(8.2)

where α is a coefficient indicating the expected balance between the objectives. Differ-
ent fitness functions can be used and their influence on the instance selection process
will be discussed later. One of the simplest versions for classification tasks is:

fitness =

(
α

Accuracy

avgAccuracy
+ (1− α)

avgNumInstances

numInstances

)v
(8.3)

while for regression it is:

fitness =

(
α

avgRmse

rmse
+ (1− α)

avgNumInstances

numInstances

)v
(8.4)

In Eq. 8.4 rmse is the root mean square error of the model trained on the cur-
rent training set, avgRmse is the average rmse over the whole population of training
sets, numInstances is the number of selected instances in the current training set
and avgNumInstances is the average number of selected instances over the whole
population of training sets. v is some positive real number, controlling how steep the
fitness functions is, that is, how strongly the better solutions are favored. The expo-
nent v makes sense if the roulette-wheel selection is performed, where each parent’s
likelihood of being chosen for the reproduction (crossover) is proportional to its fit-
ness function. If we use the tournament selection, then the exponent v is irrelevant, as
discussed in chapter 1.

In general the first part expresses the prediction quality and the second part data
reduction. One point must be clearly stated: as in the case of the similarity-based
instance selection algorithms, data reduction is always measured on the training set.
However, the quality of the solution can be measured either on the training or on the
test set. During the instance selection process we maximize the prediction quality on
the training set and the final goal is to achieve the highest prediction quality on the
test set. This is in similar way, as we train some model, e.g. a neural network, on the
training set and want it to perform well on the test set. And in a similar way some
measures to prevent the possible over-fitting must be taken.

8.4 k-NN as the Inner Evaluation Algorithm

The most time consuming part of the genetic algorithm is the evaluation of the fitness
function value, as it requires calculating the accuracy or rmse on the training set, so
we put a special effort into solving this problem.

Let us assume that there are 96 individuals in the population and that the optimiza-
tion requires 30 epochs. In this case the value of the fitness function must be calculated
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2880 times. Training any prediction model 2880 times would be computationally very
costly.

In case of the k-NN algorithm we can calculate the distance matrix between each
pair of instances in the training set only once before the optimization starts, and not
the mentioned 2880 times. We create one two-dimensional array Di for each instance
xi. The first dimension is N - the number of instances in the training set and the
second dimension is three. The three values stored in the array are: dist(xi, xj), j
and yj . dist(xi, xj) is the distances between the current instance xi and each other
instance xj , which in most cases will be an Euclidean distance. The second value j
is the ordinal number of each instance in the dataset T. The third value is the output
value yj of the j-th instance.

Then we sort the arrays Di increasingly by dist(xi, xj). At the prediction step we
only go through the beginning of the array, read the instance number j and check if
this instance is selected, if not, then we go to the next instance, as long as we find
k selected instances. Then for the k nearest selected instances we read their weights
wj from the chromosome, their output value yj and predict this instance output value
ypredicted_i as the weighted average of the k outputs (which is a simple average in case
of binary instance selection).

ypredicted_i =

∑k
j=1 yjwj

k ·
∑k
j=1 wj

(8.5)

where yj is the output value of the j-th neighbor of an instance xi andwj is the weight
expressing the j-th neighbor importance (it should not be confused with the weight
wdj related to the distance between the instances xi and xj as in the standard weighted
k-NN algorithm). Only the neighbors with wj > γ are considered in the prediction.
In binary instance selection always wj=1. To prevent an instance to be considered by
the algorithm a neighbor of itself, we set the distance to the instance itself to a very
large number as 1.79E+308 (max. value of the double type). The prediction step is
extremely fast and only this step is performed each time the rmsetrn is calculated.

Details of how the weights wj are determined in similarity-based instance weigh-
ting can be found in chapter 4 in the first part of the book. However, using evolutionary
algorithms, the weights are determined by the evolutionary process and thus we do not
need to explicitly express them with any formulas. However, we may need to use more
optimal version of the k-NN evaluator, that is mainly to include attribute weighting in
calculations of the distance matrix according to Eq. 4.3.

Although, our previous experiments [34] showed that the best results in terms of
rmse-compression balance can usually obtained if the inner evaluation model is the
same algorithm as the final predictor, using the attribute weighting in k-NN makes the
results more similar to those of other algorithms. This we sacrifice only a very small
improvement in order to shorten the optimization process usually about three orders
of magnitude. In this way we obtain better results, while still keeping the process time
short.
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In the case of instance selection, we do not have to find the absolutely best result,
but an enough good suboptimal solution is acceptable. At the end of genetic opti-
mization the improvement progresses very slowly, so by accepting a good suboptimal
solution we can save o lot of time.

A question may arise if the subset of instances that is optimal for this version of
k-NN is also optimal for other predictive models. To answer the question we per-
formed experiments, when the model used to evaluate the fitness function was an
MLP network with a single hidden layer trained with the Rprop algorithm. The re-
sults showed that the subsets selected with k-NN and MLP contained mostly the same
points, however some differences can be observed. We assume that even if the subset
selected by k-NN is not optimal for MLP, it is enough close to the optimal one and
k-NN can be used with pre-calculated distance matrix as much faster fitness function
evaluator than an MLP network.

Another question is if we can accelerate the learning of other models in similar
way by caching some information. Usually not so efficiently and not so easily as with
k-NN. Although when we go from one instance to the next one, the model could incre-
mentally learn the information about the previously considered instance and unlearn
the information about the current instance. For models such as a neural network or
a decision tree that would be very complex, as it would require storing in some arrays
most of the learning history of the model, then making some changes and partially
learning the models. Especially for neural networks, which use non-linear transfer
functions the gain would be not significant, as most of the model learning would need
to be done anew and the complexity of the incremental algorithm would be very high.
Thus this approach is impractical.

Thus, we can assume that the proposed solution is the best compromise between
the accuracy, speed and simplicity of implementation.

8.5 Experimental Evaluation

In this chapter we present the results obtained for classification tasks. The results
obtained for regression tasks are presented in chapter 10 in order to compare them
with the results obtained with additional data partitioning.

In Table 8.1 we present the results for k-NN with optimal k and an MLP neural
network as the final predictor. The neural networks were trained with the R-prop al-
gorithm. We used networks with one hidden layers. The numbers of neurons in the
hidden layer was equal to the geometric mean of number of inputs and number of
classes.

The α parameter was used to assign weights to the two objectives: classification
accuracy and data reduction. The power exponent v in the fitness function (8.3) was
gradually increased during the training. We started from v=2 and finish at v=6, as the
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differences between particular individuals tend to get much smaller as the genetic op-
timization progresses. If an individual contained fewer than four instances, we always
added the missing instances from the most frequent instances.

dataset alpha ret(IB3) kNN(IB3) MLP(IB3) ret(EV) kNN(EV) MLP(EV)
0.99 13.7 91.4 92.5

ImgSegm 0.96 13.9 90.0 91.0 13.7 91.4 91.6
0.90 13.7 91.4 91.5
0.99 14.8 83.9 85.1

balance 0.96 15.2 78.0 82.3 10.0 83.0 84.1
0.90 5.2 82.4 83.6
0.99 20.3 70.2 70.1

Led7digit 0.96 20.1 50.1 50.3 16.1 65.0 65.3
0.90 12.7 62.4 63.3
0.99 19.6 69.6 70.3

bupa 0.96 22.8 67.9 68.8 14.4 67.9 69.0
0.90 12.6 65.3 67.5
0.99 29.4 64.5 66.1

vehicle 0.96 30.3 62.7 64.1 22.0 62.3 63.8
0.90 16.1 60.7 62.8
0.99 4.02 97.5 91.3

penbased 0.98 3.60 97.4 90.0 3.20 97.3 91.3
0.96 2.54 91.5 88.0
0.99 1.86 94.1 97.1

PageBlk 0.96 2.29 93.8 93.6 1.09 93.3 96.8
96.75 0.82 92.4 96.5
0.99 2.85 84.9 85.3

magic 0.96 3.91 82.9 82.5 1.98 84.0 84.5
0.90 1.15 82.6 83.1
0.99 15.4 52.0 54.9

yast 0.96 14.4 48.4 50.2 10.1 50.8 51.6
0.90 6.67 48.4 50.0
0.99 2.96 97.5 97.5

twonorm 0.96 3.51 95.3 95.2 1.86 95.5 95.4
0.90 1.12 94.8 94.9

Table 8.1. Experimental results. ret(.) - retention (percentage of selected instances),
kNN(.), MLP(.) - classification accuracy obtained with k-NN and MLP neural network
as the final predictors for two instance selection methods: ENN+IB3 denoted as IB3
and evolutionary instance selection denoted as EV.
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In instance weighting in k-NN each instance was multiplied by its weight and the
weighted number of instances in each class was considered. In the MLP network the
error the network makes during learning on each instance was multiplied by the in-
stance weight. Instance weighting only seldom improved the results for classification.
However, based on our previous experience with instance weighting we expected the
weighting to work well in regression problems, especially with noisy data [7, 34, 97]
and our tests with evolutionary instance weighting for regression presented in chapter
9 show that in this case instance weighting is most beneficial.

The results obtained with evolutionary instance selection were better than those
obtained with similarity-based instance selection algorithms, although the results ob-
tained with multi-objective evolutionary algorithms are still better. A short comparison
will be shown in chapter 9.

8.6 Other Solutions from Literature

Tolvi [98] used genetic algorithms for outlier detection and variable selection in linear
regression models, performing both operation simultaneously. The author evaluated
the model on two very small datasets (35 instances with 2 features and 21 instances
with 3 features).

In [99] an algorithm called Cooperative Coevolutionary Instance Selection (CCIS)
was presented. The method used populations evaluated cooperatively. The training set
was divided into n equal parts and each part was assigned to a subpopulation. Each
individual of a subpopulation encoded a subset of training instances. Every subpop-
ulation was evolved using a genetic algorithm. The second population consisted of
combinations of instances sets. The population of combinations kept track of the best
combinations of selectors for different subsets of instances, selecting the combinations
that are promising for the final global selector selection of the whole dataset.

In [100] Antoneli et al. presented a complex genetic algorithm-based solution. They
tackled the instance selection problem with Multi-objective Evolutionary Fuzzy Sys-
tems through a coevolutionary approach. In the execution of the learning process, peri-
odically, a single-objective genetic algorithm evolved a population of reduced training
sets. The single-objective genetic algorithm aimed to maximize the index, which mea-
sured how much the results computed by using, respectively, the reduced training set
and the all training set were close to each other - the closer the better.

In [101] a coevolutionary algorithm was presented for instance and feature selec-
tion and particular problems were assigned to several populations to handle each one
separately. This allowed to employ a divide-and conquer strategy, where each popula-
tion was optimizing a part of the problem. Then the authors tried to joint the solutions
obtained by each population in an attempt to obtain better results as those generated
by non-coevolutionary approaches.
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In [102] multi-selection of instances was proposed by allowing the selection of
instances more than once. If the inner evaluation algorithm in the instance selection
is k-NN then for classification tasks an instance can be selected between 1 and k/2
times (more than k/2 does not make sense, as k/2 is enough for correct classification).
The advantage of this approach is first reduction of distance matrix calculation time,
second reduction of storage, however one additional field must be added to the dataset
for the number of each instance repetitions.

In [103] an evolutionary instance selection algorithm that combines three strategies
was proposed. The first strategy was to use the optimal genetic algorithm. In this case
it was the CHC genetic algorithm, as according to the authors’ tests it performed the
best from the methods they examined. The second strategy was to incorporate the
possibility of selecting each instance more than once (as it was in the paper mentioned
above). The third strategy was to use a local value for k that depends on the nearest
neighbors of every test instance. So in general their approach was the same as ours to
combine several best strategies into one algorithm (and obviously test it they also work
best when used together). The difference was however, that they optimized different
parameters.

8.7 Conclusions

An instance selection method using genetic algorithms as a search engine was pre-
sented. As the experimental results showed, the quality of the solution was usually
higher than that of the best similarity based instance selection algorithms, while the
computational time was comparable, although a bit longer for small datasets.

We added the caching of the information required by k-NN - the precalculated
and sorted distance matrix and the corresponding matrix with instance numbers and
outputs. Instance weighting did not cause significant improvement in classification
tasks in comparison with binary instance selection. Also setting the balance α between
accuracy and compression in some cases did not have any influence on the results, as
it was enough to select only a few instances to obtain the best classification accuracy.

However, based on our tests with the methods with different parameters, we no-
ticed, that there are two limitations of all the methods: one is the problem with too
long chromosomes, and the other one is the problem of the natural diversity in the
dataset, causing possible over-fitting if the optimization is run too long, as was al-
ready discussed. Several improvements, which can address these problems and reduce
the computational effort are discussed in chapters 10 and 11.

It is very difficult to make the experimental comparison with other evolutionary
instance selection methods, as the authors very rarely provide the results in a form
that can be compared or the software they used in the experiments, so we were not
able to find any results in the literature that could be compared here.



Chapter 9
Multi-Objective Evolutionary Instance Selection

Abstract This chapter focuses on multi-objective evolutionary instance selection in
regression and classification tasks. The objectives are: improving prediction results
in terms of classification accuracy or rmse and reducing the dataset size. The multi-
objective approach allows for obtaining a pool of solutions that create a Pareto front
and choosing the desired solution from the front. We analyze how particular properties
of the data and parameters of the instance selection process influence the obtained
results and suggest the best solutions for given situations.

9.1 Introduction

Instance selection is by its nature a two-objective problem. The first objective is train-
ing dataset size minimization and the second one is improvement of the prediction
accuracy of the model trained on that data. Thus there are usually multiply solutions
to that problem, depending on the coefficient α in Eq. 8.1 and 8.2.

So far to obtain a set of solutions we would have to run the instance selection pro-
cess many times with different α parameters. However, the multi-objective methods
come with help and allow us to run the process only once to obtain a pool of solutions
without even defining the α parameter.

In this chapter we present the methods of multi-objective evolutionary instance
selection for classification and regression tasks, which we called MISC2 and MISR2
(where 2 stands for the second version of the algorithm). We proposed the first version
in our works [104] and [105]. The second version uses improved initialization, new
mutation scheme and forms the solution from several subsolutions to improve the
results.

First we present the basics of the multi-objective evolutionary instance selection
(objectives, the Pareto front, and the instance selection process). Then we will dis-
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cuss the optimizations of various parameters. In the next two chapters we will present
additional improvements to the process. We will use more space for discussing the
multi-objective evolutionary instance selection than the approaches discussed so far,
first, because is a more complex issue and second, because so far it allowed us for the
best results in terms of accuracy-compression or rmse-compression balance.

9.2 Encoding

In multi-objective evolutionary instance selection we used the same encoding of in-
stances into chromosome as in single-objective selection. Each individual in the popu-
lation represents one training dataset T and each position of the individual’s chromo-
some represents a single instance; 0 at this position means it is rejected and a positive
value - it is selected (1 for binary instance selection and a real number between 0 and
1 for instance weighting). For more details see chapter 8, section 8.2.

9.3 The Objectives

In multi-objective instance selection, we have the same two base objectives as the
single-objective selection. However, the difference is that now we do not need any
coefficient α to assigned the weights to them as in Eq. 8.1 and 8.1. They are just two
separate objectives fo be minimized:

retention and 1− accuracy for classification tasks
and
retention and rmse for regression tasks.

A key advantage of the multi-objective evolutionary optimization is obtaining
a pool of solutions situated on the Pareto front (see chapter 7), where each of them
is the best for certain retention - accuracy or retention - rmse balance.

Also in the same way, as in single-objective evolutionary-based instance selection,
it must be distinguished between the final objective, which is maximization of accu-
racy or minimization of rmse on the test set (acctst or rmsetst) and the objective
used by the instance selection process, which is maximization of accuracy or mini-
mization of rmse on the training set (acctrn or rmsetrn). The final objective (acctst
or rmsetst) cannot be optimized directly, because the test set is not available while
selecting the instances.
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However, acctrn or rmsetrn are not optimized directly, but the NSGA-II algorithm
(see chapter 7) optimizes the following values for binary instance selection:

rmsetrn (w) = knn(S(w),T)

ret (w) = 1
N

N∑
i=1

nred (wi)
(9.1)

While for real-value instance weighting the following objectives are directly optimized
by NSGA-II:

rmsetrn (w) = knn(S(w),T)

ret (w) = β · 1
N

N∑
i=1

wi + (1− β) · 1
N

N∑
i=1

nred (wi)
(9.2)

where rmsetrn(w) is obtained with the k-NN algorithm while predicting output of
all instances from the original training set T, using the reduced (selected) training set
S given by the weight vector w (each time without the instance currently being pre-
dicted). ret(w) is the sum of instance weights (which in binary selection equals the
number of selected instances, while in instance weighting it is a weighted sum of the
instance weights wi and the number of instances with non-zero weights nred(wi)).
nred(wi) returns 1 if the instance is selected and 0 if it is rejected. β is a parameter
that balances the sum of the instance weights and the sum of the not rejected instances.
The first term, summing the instance weights, is needed to allow crossover and mu-
tation operations to gradually reduce some of the instance weights wi. For instance
weighting nred(w) is calculated as follows:

nred (w) =

{
1 for wi > γ
0 for wi <= γ

(9.3)

where γ is a rejection threshold. Instances with weights lower than γ get rejected
and are not taken into account by the k-NN algorithm, while instances with weights
greater than γ are taken into account proportionally to their weights (as well by the
inner evaluation as by the final prediction model), as will be discussed in the next
section. We set γ to 0.01, however, the exact value is not so crucial, as the algorithm
adjusts its behavior by modifying the weights proportionally to γ). Such an approach
allows the optimization algorithm to minimize the instance weights and, consequently
perform the reduction of instances. When we report the retention in the experimental
results (columns c1 and c2 in the result tables), we take into account the number of all
instances with non-zero weights (any non zero weight is counted as 1 while calculating
c1 and c2).

We also attempted to obtain solutions with high prediction quality and low com-
pression that were not present in the main front by using an additional α parameter in
the objectives for classification tasks:
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obj0 (S) = 1− acc(S)
obj1 (S) = α · (1− acc(S)) + (1− α) · retention (S)

(9.4)

and for regression tasks:{
obj0 (S) = rmse(S)
obj1 (S) = α · rmse(S) + (1− α) · retention (S)

(9.5)

where S is the selected set, α is a coefficient introduced to adjust the position of the
Pareto front by stronger preferences of lower rmse (higher accuracy) or lower reten-
tion. If α is set to 0, the objectives of the algorithm work as in a typical Pareto-based
algorithm. If α is set to 1 the algorithm works as typical single-objective algorithm.
However, these experiments with the α parameter were not very successful and we
decided to use multiply Pareto fronts instead (see chapter 10).

9.4 Pareto Front

We present the Pareto front in Fig. 9.1 and 9.7, where each pair of points (orange
and green) represents one solution with the percentage of selected instances on the
horizontal axis and the corresponding 1− accuracy or rmse on training set (orange)
and on test set (green) on vertical axis. Only the points that formed the Pareto front
are shown in the figures. Horizontal orange and green lines show the accuracy or
rmse without instance selection. In case of classification we place 1 − accuracy on
the vertical axis in order to make these plots look in the same way as the plots for
regression tasks, so that the lower value on the vertical axis is always better.

An example of the obtained Pareto front and the four points of interest are shown in
Fig. 9.1. As there is no way to show the whole Pareto fronts for many dataset without
extending this chapter far beyond the acceptable length, and moreover no simple way
to compare the whole fronts, we will present four most characteristic points of interest
(r0, c0), (r1, c1), (r2, c2), (rmin, c(rmin), where rmin = min(r0, r1, r2, r3), which
we proposed first time in the work [105]:

• r0 - rmse obtained in 10-fold cross-validation with a given prediction model with-
out instance selection.

• c0 - c0 is always 1, which means there is no compression on the whole dataset, for
that reason the column does not occur in any table.

• r1 - rmse obtained in 10-fold cross-validation with a given algorithm with instance
selection corresponding to the point (c1, r1) in the Fig. 9.1; this is the rmse ob-
tained on the test set, using the training set, which started the Pareto front. The
figure shows the points on the Pareto front obtained only on one cross-validation
fold (one pair of traning-test) in the cross-validation. The values reported in the ta-
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bles are averaged over the 10 folds. In orange - the points obtained on the training
set and in green the corresponding points obtained on the set set.

• c1 - retention (1-compression) corresponding to the point (c1, r1) in the Fig. 9.1.
• r2 - rmse obtained in 10-fold cross-validation with a given algorithm with in-

stance selection corresponding to the point (c2, r2) in the figure; this is the rmse
obtained on the test set, using the training set, which was closest to point (r0trn,
1-compression=0); the blue line shows this distance. This point was selected as a
representative point, because further increasing compression usually leads to sud-
den increase of rmse, making the area to the left of that point practically unusable.

• c2 - retention (1-compression) corresponding to the point (c2,r2) in the Fig. 9.1.
• r3, c3 - rmse and compression obtained with the alternative initialization (90%

probability of each instance being included in the initial population) and objective
criteria - only rmsewas minimized; it was aimed to obtain rmse lower than r1 and
r0 (without compression). However, sometimes it happened that r3 was equal r0
or to r1, what meant that no further decrease of rmse below r0 or r1 was possible
to obtain.

Fig. 9.1. Sample results in one fold of the cross-validation. They symbols used in the
figure are described in the listing in Section 9.3.
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9.5 Instance Selection Process

The diagram of the process is presented in Fig. 13.1 and 13.2. For the NSGA-II based
optimization we use p=96 individuals (96 is a multiply of the number of CPU cores
in our server, so it is more optimal than e.g. 100 due to the process parallelization).
The number of epochs (iterations) in the evaluation must be carefully chosen, because
if too many epochs are used, an over-fitting occurs and the results on the test set
begin to drop although the results on the training set are still improving. Based on
the experiments, we decided to use the following number of epochs e rounded to the
nearest integer:

e = e0 · log(N) (9.6)

where N is the number of instances in the original training set T, e0=8 for binary
instance selection and e0=24 for real value instance weighting. For example, that gives
20 epoch for 300 instances and 34 epochs for 30,000 instances for binary instance
selection.

Fig. 9.2. Horizontal axis: 10 pairs of training-test subsets in 10-fold cross-validation.
Vertical axis: rmse obtained on each test subset. The blue points (r0) represent the
rmse for the 10 test subsets before instance selection and the brown points (r1) af-
ter the selection: left on a small dataset (autoMPG8), right a medium-size dataset
(abalone).

The random variability of rmse introduced by the instance selection is really very
low; the rmse obtained on each test subset within the cross-validation after the com-
pression is highly correlated with that one before the compression. Thus the variance
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obtained within cross-validation was mainly caused by the diversity of the datasets
and not by the stochastic character of the evolutionary optimization. This is illustrated
in Fig. 9.2, where the blue points represent the rmse for the 10 test subsets before
instance selection and the brown points after the selection. In Fig. 9.2 it is shown for
a small a medium-size dataset. For large datasets the correlation is even higher.

The rationale behind choosing k-NN as the inner evaluation algorithm is the speed
of this approach, as described in the previous chapter.

In the following four sections particular steps of the optimization are presented and
finally the conclusions from the optimization are combined together. In each of the
sections first description of the problem is provided and then experimental results are
presented. The experiments are short in the first two optimizations, because the choices
of the parameters are clear and much more detailed in the last two optimizations,
where the parameters can be chosen depending on data properties and user preferences
and thus require more discussion.

9.6 Choice of the Multi-Objective Genetic Algorithm and its
Parameters

9.6.1 Problem Description

The first point to decide is which multi-objective evolutionary algorithm should be
used. We conducted a lot of tests to choose the best method. There is no place here to
present all of them, thus we will only show some examples to illustrate the problem
and final conclusions. In the tested methods we included not only the multi-objective
solutions, but also considered the possibility that if we run several times single-
objective evolutionary algorithms to obtain several solutions on the Pareto front, the
results will be so much better that the only advantage of multi-objective approaches
will be time saving at the cost of the solution quality. However, that turned out not to
be true.

9.6.2 Experimental Evaluation and Discussion

We have evaluated several evolutionary algorithms and made a literature search to
find the comparisons in other studies. There was the following conclusion: we should
choose the NSGA-II algorithm [94] and adjust it to our purposes. Despite newer so-
lutions, it often produces the best results. Recently, a new version of this algorithm
has been developed (NSGA-III [95]), which is dedicated to problems with more than
two objectives. As both algorithms were developed by Deb, there is no reason not to
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believe him, when he suggests to use NSGA-II for problems with two objectives and
NSGA-III for problems with more than two objectives. For this reason, we did not
considered and not tested NSGA-III. Because we decided to base on NSGA-II, we
described it in chapter 7, section 7.10.

Here we present a short comparison of three selected methods:

1. single-objective genetic algorithm as used in chapter 8
2. NSGA-II
3. SEEA

and evaluation of the following parameters:

1. population size (P = {24, 48, 96, 192})
2. The α parameter in fitness function in Eq. 9.5 (α = {0, 0.5, 1}); this value refers

to the second objective (α=0 means the second objective is retention, α=0.5 means
the second objective is 0.5 · retention + 0.5 · rmse, α=1 means both objectives
are rmse)

Some of the obtained results are presented in Table 9.1 and 9.2. The examples of
the results for selected problems are shown in Fig. 9.3 and 9.4. From that analysis we
draw the following conclusions:

• The NSGA-II algorithm showed the best performance. It allowed for obtaining the
lowest rmse and the widest variation in the obtained results in terms of compres-
sion (with α=0 in Eq. 9.5). In even allowed obtaining a lower front than several
runs of a single-objective genetic algorithm.

• The lowest rmse was obtained for α = 1, however in that case it was not possi-
ble to obtain a wide spectrum of solutions, and the compression level was low in
comparison with other results.

• The population of about 60-100 individuals seems to be optimal. Above this the
rmse value and the range of differentiation in terms of compression does not im-
prove significantly anymore. Below that value, the convergence can be in some
cases a little faster, that however limits the population diversity and the process be-
comes less stable, resulting in not finding the best results sometimes. We decided
to use the population size P=96 individuals, because there were 24 and 48 CPU
cores in our servers and that allowed to scale the calculations well in parallel.
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EA (NSGA-II, =1)α NSGA-II =0.5)(α
NSGA-II =0.0)(α SEEA =0.0)(α

learning (k-NN = 0.5563) testing (k-NN = 0.5490)a)
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Fig. 9.3. Example of Pareto fronts obtained with different evolutionary algorithms
using k-NN with optimal k as inner evaluator and final predictor for three datasets:
a) ele-1, b) laser, c) abalone.
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Fig. 9.4. Example of Pareto fronts obtained with NSGA-II with different population
sizes P = 24, 28, 96 and 192, using k-NN with optimal k as inner evaluator and final
predictor for three datasets: a) ele-1, b) laser, c) abalone.
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Table 9.1. Average results for all tested datasets for different evolutionary algorithms.

algorithm r1 c1 r2 c2
EA (NSGA-II, α = 1.0) 0.536 0.472 0.536 0.472

NSGA-II (α = 0.5) 0.544 0.422 0.572 0.223
NSGA-II (α = 0.0) 0.542 0.442 0.580 0.174

SEEA (α = 0.0) 0.551 0.430 0.569 0.330

Table 9.2. Average results for all tested datasets for different population size P .

P iterations r1 c1 r2 c2
24 160 0.552 0.385 0.593 0.201
48 80 0.547 0.417 0.585 0.162
96 40 0.539 0.435 0.580 0.168

192 20 0.543 0.422 0.592 0.220

9.7 Assessment of Population Initialization Methods

9.7.1 Problem Description

Typical initialization assigns randomly generated values as parameters of the individ-
uals. For this purpose different methods can be used (e.g. Pseudo-Random Generators
[106], Quasi-Random Generators [107], Population dependent methods [108]). The
main goals of such methods is the optimal and even coverage of the search space,
which can increase convergence speed of the optimization and decrease standard de-
viation of the obtained results.

In addition, methods based on value transformations [109], a priori knowledge
about the problem [110] or clustering [111] can be also used. It is worth mention-
ing that, according to some authors, initialization should be selected to a particular
issue, and even to a specified simulation problem [112]. In our study different types
of the initialization, including the proposed initialization adapted to the complexity
aspects of instance selection, were tested.

According to [108], one of the best initialization method that relies on population
is Adaptive Randomness (AR). In AR only this candidate for which the smallest dis-
tances to the rest of the population is larger than for all other candidates is added to the
population. The advantage of this method is that the created candidates do not have
to be evaluated, only the distance to the already assigned individuals is calculated.
Population-based methods do not depend on random number generators and methods
of transforming numbers. Due to that they can be combined with other types of initial-
ization methods [113]. We tested such combinations with the idea to produce different
initial values (e.g. initialize more smaller values and examine the effect of such ini-
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tialization on the resulting compression). The tested initialization methods are shown
in Table 9.4.

Additionally, we used new methods developed by Krystian Łapa, which aim at
differentiation of initialized values (to achieve different degrees of compression in
instance selection):

• Power transformation. In this method the randomly generated number rnd is raised
to a certain power v as follows:

w = rndv (9.7)

where higher v results in lower values obtained after transformation (because
rnd<1).

• Fill transformation. This binary transformation method uses probability f that de-
termines balance between 0 and 1 in the initialization:

x =

{
0 for rnd < f
1 for else

(9.8)

• Spread initialization. The idea behind this method is to differentiate the individuals
in population in terms of the different probabilities of occurrence of small and large
values:

x =

{
0 for rnd < c
rnd for else

(9.9)

where c = 0.1 + h ∗ n/S is a parameter dependent on the individual in the pop-
ulation, n stands for index of the individual in the population, h is the method
parameter (see Table 9.3).

The numbers generated by initialization methods are rounded to the closest accept-
able values defined by the numLevel parameter (see Section 9.9).

Initially we thought about using a similarity-based instance selection algorithm, as
CNN or DROP5, to initialize the population with the results of that algorithm and then
only make some random perturbations around these values. But this turn out to be im-
practical. There are two reasons for that. The first one is that for big datasets DROP5 is
slower than our method, so this does not make sense. CNN with some modification to
improve the k-NN calculations can be faster. However, using that kind of initialization
is not optimal, as this significantly narrows the initial pool of solutions and thus first
the genetic algorithm has to produce the more evenly spread solutions, what together
does not bring any time gain and increases the complexity of that approach. Thus it is
a better option to use some the initialization methods from Table 9.3, adjusted to the
expected Pareto front location (see chapter 10).
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9.7.2 Experimental Evaluation and Discussion

The population initialization methods and the obtained results are presented in Ta-
ble 9.3 and in Fig. 9.5. The results can be summed up as follows:

• Initialization methods, especially those diversified in terms of fill value level of the
initial population, have a significant influence on the obtained results.

• Most methods (except 3, 4, 7, 11) do not allow a high degree of compression. These
four methods seem to be the most interesting in combination with further use of the
NSGA-II algorithm.

• Very good accuracy (low rmse) can be obtained using methods 9 and 10, unfortu-
nately in this case the results have the lowest degree of compression.

Table 9.3. Average results for all tested datasets for different initialization methods
(lower values are better). See section 9.4 for explanation of the symbols r1, c1, r2, c2.

init transformation population r1 c1 r2 c2
1 adjusted to acceptable values simple 0.539 0.481 0.550 0.423
2 none simple 0.541 0.457 0.565 0.281
3 power (p = 2) AR (R = 10) 0.542 0.434 0.613 0.191
4 power (p = 4) AR (R = 10) 0.535 0.447 0.597 0.130
5 power (p = 8) AR (R = 10) 0.540 0.477 0.554 0.411
6 fill (f = 0.500) AR (R = 10) 0.539 0.437 0.565 0.260
7 fill (f = 0.250) AR (R = 10) 0.539 0.422 0.583 0.175
8 fill (f = 0.125) AR (R = 10) 0.541 0.540 0.555 0.420
9 fill (f = 0.750) AR (R = 10) 0.533 0.603 0.549 0.433

10 fill (f = 0.875) AR (R = 10) 0.535 0.607 0.546 0.434
11 none spread (h = 0.2) 0.534 0.565 0.568 0.204
12 none spread (h = 0.8) 0.543 0.429 0.569 0.261
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Fig. 9.5. Example of Pareto fronts obtained with NSGA-II and different initialization
methods using k-NN with optimal k as inner evaluator and final predictor for three
datasets: a) ele-1, b) laser, c) abalone. See Table 9.3 for the number explanation.
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9.8 Tuning k-NN Parameters

9.8.1 Problem Description

In the first and second step we were able to choose the most optimal solutions for
our purposes, that were universal for most of the cases. Here, we cannot specify one
universal set of parameters, which is best for all the evaluated models. The optimal
parameters vary depending on the dataset and the final predictive model. For that rea-
son we provide here more detailed test results, which are placed in the next chapter in
order to compare them also with the improved versions, described in the next chapter.

9.8.2 Experimental Evaluation and Discussion

Most of the papers on instance selection (however not all fortunately) show only how
instance selection influence the prediction in classification or sometimes regression
tasks, when the predictive model is 1-NN algorithm. Indeed 1-NN is rarely the optimal
prediction model and it is much easier to improve the results of a poor model (1-NN)
than of a good one. Examples of better models are k-NN with optimal k, an MLP
neural network and other models (of course these models do not perform better than
1-NN in each case, but on average they definitely do). So in this way the authors can
easily show how much their methods improved the results, but they cannot show how
universal the method is in improving the results with other predictive models.

In this chapter we have chosen three predictive models: 1-NN, k-NN with optimal
k, and an MLP neural network. The three models were chosen purposely, as each
of them represents one group of predictive models with different properties, thus by
evaluating the results on these models we can asses the performance of the methods
with other learning models.

1-NN is very sensitive to instance selection, as it predicts the output value of the
instance of interest to be the same as its nearest neighbor value. Thus, when we change
the nearest neighbor by removing the current one, the prediction will significantly
change.

k-NN is less sensitive to instance selection, the higher k the less. That is, because
k-NN averages the outputs of k instances. If we remove one of them, then another
instance will take its place. This will change the outcome, but definitely less strongly
than the outcome of 1-NN. Even, if we remove more of the current neighbors and
they will get replaced by the next nearest remaining instances, then usually some of
them will have lower and some higher value of the output (or in case of classification
some will change the class from A to B and other from B to A), so the changes will
significantly cancel out one another.
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Finally an MLP neural network belongs to the third group of learning models. An
MLP network displays several properties, that were absent in k-NN. The first one is
the possibility of any shapes of the decision boundary in classification or any shape
of the target function in regression. The next one is that a very broad neighborhood
is used to form the decision boundaries or the target function. The third property is
that an MLP neural network performs automatic feature weighting during the learning
process, done by setting the weights between neurons to appropriate values (see chap-
ters 14 and 17). Although, we can learn the k-NN model using the weighted features,
e.g. using correlation in regression problems or another feature filter, its prediction
will never be exactly the same.

The results of this section can be summarized as follows:

• A similar compression was achieved for 1-NN and k-NN as the inner evaluators.
However, the biggest improvement in terms of rmsewas observed for 1-NN, where
the average rmse reduction was 4.0% for retention rate 62.7% and 9.0% for reten-
tion rate 74.0%. 1-NN was the algorithm that produced the highest rmse on the
original uncompressed data and thus there was the biggest room for improvement
in this case. In case of optimal k k-NN the algorithm performed better on the orig-
inal uncompressed data in point c1 with retention rate = 49.7%. However, at the
point c3 with retention rate 84.3% we were able to reduce rmse by 1.6%.

• The MLP neural network was less sensitive to the instance selection in terms of
the rmse and the most obvious benefit of instance selection in this case was the
shortening of the network learning process and thus giving the chance to try many
different network configurations in a limited time. Although the rmse decreased
by 0.8% at c1 and by 2.5% at c3 - the first change was statistically insignificant
according to as well t-test and Wilcoxon test. The MLP obtained definitely the best
results for these problems on the uncompressed data and proved to be a better clas-
sifier than any k-NN algorithm. Thus, it was quite difficult to improve the results
of MLP prediction but also difficult to make the prediction worse by too strong
instance selection. At the point c2 (with the strongest compression) the increase of
the rmse was about 3 times lower than for 1-NN and k-NN. However, as we have
already mentioned, the results could be improved by using the MLP network also
as the evaluation algorithm on the training set during the evolutionary optimization,
but as it causes very high growth of computational complexity, the solution is in
most cases not advised. However, second best evaluation algorithm to work with
an MLP neural network predictor was the optimal k k-NN.

• It is interesting that the optimal k was frequently different before and after instance
selection. After instance selection it tended to converge more or less to the values
of 5, 6 or 7. That is, if before selection the optimal k was 1 then it could be 3
after selection, if it was 3 before it was about 5 after, if it was 11 before, it was
about 7 after. It can be explained, as after the selection fewer instances remained in
the dataset, so the distances between them were bigger and frequently the previous
closest neighbor of the examined instance no longer existed and thus it had to be
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replaced by some further, but still existing instances. On the other hand a high value
of optimal k is characteristic for noisy datasets. As instance selection removes noise
and outliers, thus no longer so many neighbors are required to mask the detrimental
effect of the outliers.

The tables with results are presented in chapter 10 together with the results obtained
with the additional enhancements used in MEISR version 2.

9.9 Evaluating Instance Weighting Scheme

9.9.1 Problem Description

In a typical instance selection algorithm a binary vector of parameters stores the infor-
mation about the selected instances. However, to enhance the performance of instance
selection algorithms, a weight for each instance can be additionally assigned. This
can be really important especially in the regression problems [96, 114, 7]. This topic
was already discussed in the previous chapter. Here, we add more possibilities to the
binary and real-value weights.

In this approach each individual is encoded as a weight vector w = {w1, ..., wN},
where N is the size of the training set T . What is new, however, is that the weight
vector w can only take a specific values assigned from the set {0, σ, 2σ, 3σ, ..., 1},
where the σ is determined by the parameter numLevels and it is calculated as follows:
σ = 1/ (numLevels− 1). In case of numLevels=2 the weight vector w can have
only two values: 0 and 1. In case of numLevels=5 the weight vector w can have five
following values: 0.00, 0.25, 0.50, 0.75, 1.00, etc. If numLevels=0 the weight vector
w can be assigned any real number between 0 and 1. The initial values of vectors
depend on the initialization method. Due to the proposed encoding, the initialization,
crossover and mutation operators used for a modification of the individuals by genetic
algorithm have to bee also adjusted (see Table 9.4).

9.9.2 Experimental Evaluation and Discussion

The following values of the numLevels parameter have been evaluated:

1. numLevels = 0 (real values).
2. numLevels = 2 (binary values).
3. numLevels = 5 (0.00, 0.25, 0.50, 0.75, 1.00 values).
4. numLevels = 11 (0.0, 0.1, ..., 0.9, 1.0 values).
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Table 9.4. Proposed crossover and mutation operators, rnd is a randomly generated
real number from the range 〈0, 1〉, RND(n1, n1) is a randomly generated integer
number from the set {n1, ..., n2},mrange is the mutation range parameter (set experi-
mentally to 0.2), each gene is mutated with probabilitymprob=0.2, w1 and w2 denotes
the values of the parents’ genes.

operator numLevels modification

crossover 0 x=

w
1 + rnd ·

(
w2 − w1

)
for rnd < 0.2

w1 for rnd > 0.6
w2 for else

crossover > 0 w =

{
w1 for rnd < 0.5
w2 for else

mutation 0 w = w + (rnd− 0.5) ·mrange

mutation > 0 w = σ ·RND (0, numLevels− 1)

The obtained results are presented in Table 9.5. The examples of the results for
selected datasets are shown in Fig. 9.6. The results can be summed up as follows:

• The lowest rmse was obtained for numLevels=5, but the difference was insignif-
icant and the compression was far worse in comparison to numLevels=2.

• Adding more possible values that instance weights can take, makes instance selec-
tion process longer (more iterations are required).

• The results for numLevels=2 are in most cases the best in terms of rmse - com-
pression balance.

• The results for numLevels=0 take the broadest range of compression values. The
two areas where numLevels=0 can provide better results than binary instance se-
lection are the regions of very high compression where it is usually able to achieve
lower rmse and noisy datasets that require high k value in k-NN.

Table 9.5. Average results for the examined datasets for different values of
numLevels parameter.

numLevels r1 c1 r2 c2
0 (real values) 0.551 0.749 0.618 0.243

2 (binary values) 0.550 0.427 0.580 0.201
5 (0.00, 0.25, ...) 0.543 0.655 0.572 0.402
11 (0.1, 0.2, ...) 0.545 0.763 0.572 0.539
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Fig. 9.6. Example results for different values of numLevels parameters for: a) forest
fires dataset, b) wankara dataset, c) delta ailerons dataset. Results values for k-NN
method with optimal k are also included.
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Table 9.6. Experimental results. Inner evaluation model: optimal k k-NN with real-
value instance weighting. Prediction model: optimal k k-NN with real-value instance
weighting, k=3 was used if optimal k was less than 3.

dataset rr1 c1 rr2 c2
machineCPU 1.038 0.385 1.086 0.216
baseball 1.029 0.591 1.244 0.110
dee 1.015 0.403 1.182 0.137
autoMPG8 1.108 0.499 1.320 0.160
autoMPG6 1.082 0.401 1.248 0.156
ele-1 0.963 0.489 0.985 0.178
forestFires 0.844 0.456 0.847 0.126
stock 1.338 0.689 1.729 0.371
steel 1.110 0.665 1.333 0.165
laser 1.193 0.489 1.330 0.128
concrete 1.138 0.593 1.303 0.129
treasury 1.503 0.531 2.015 0.159
mortgage 1.554 0.682 2.246 0.263
friedman 1.132 0.668 1.437 0.176
wizmir 1.081 0.491 1.339 0.117
wankara 1.096 0.643 1.635 0.127
plastic 0.965 0.504 1.112 0.184
quake 0.976 0.374 0.979 0.117
anacalt 1.661 0.510 1.904 0.226
abalone 1.028 0.435 1.059 0.136
delta-ail 1.011 0.477 1.035 0.170
puma32h 1.008 0.619 1.035 0.135
compactiv 1.077 0.441 1.388 0.097
delta-elv 1.000 0.546 1.027 0.123
tic 0.970 0.496 0.977 0.121
ailerons 1.015 0.421 1.069 0.128
pole 1.249 0.583 1.319 0.108
elevators 0.990 0.662 1.110 0.081
california 1.008 0.532 1.053 0.112
house 1.046 0.671 1.083 0.236
mv 1.280 0.540 1.328 0.420
average 1.113 0.532 1.282 0.165
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As can be seen from Fig. 9.7 using instance weighing we obtain a Pareto front
that is more extended and determined by more points, even for small datasets, as
autoMPG8.

Fig. 9.7. Sample Pareto fronts obtained for the autoMPG8 dataset. Left: binary in-
stance selection. Right: real-value instance weighting. Orange points: training set,
green points: test set. Horizontal orange and green lines: rmse without instance selec-
tion.

9.10 Comparison with Other Methods

Not counting our own papers, we were able to find in the literature only one paper,
which considered instance selection for regression problems with the results presented
on several datasets, reporting the obtained compression and rmse or coefficient of
determination R2. So this is another proof that there are not much reliable results on
the research in instance selection in regression tasks and that it was a good idea to
undertake this research topic.

The paper "Instance selection for regression: Adapting DROP" [30] presented re-
sults only for a single point and used 8-NN for each dataset. We obtained from the
authors detailed experimental results for most of the datasets from the Keel Reposi-
tory. So we conducted the experiments with our approach using 8-NN for a precise
comparison with that method and measured the output additionally in coefficient of
determination R2, because that measure was used in the paper. There were four meth-
ods in this paper and clearly one of them (DROP3-RT) was better than the others, so
we included only DROP3-RT in the comparison.

Obviously we could perform a good comparison with our results obtained from
other methods. Thus we selected the best four of those methods for comparison. These
methods were based on instance selection ensembles, as described in chapter 5.
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Fig. 9.8. Average results over 30 regression datasets from Keel Repository obtained
with various instance selection algorithms. The data partitioning is discussed in the
next chapter.

Table 9.7. Comparison of average values over 30 datasets for 5 instance selec-
tion methods: the best four methods from the work [38]: Threshold-Ensemble-
CNN, Threshold-Ensemble-ENN, Discretization-Ensemble-CNN, Discretization-
Ensemble-ENN and the multi-objective evolutionary instance selection. The values
in the table are the relative rmse (rmse with compression divided by rmse without
compression: r1/r0) for retention rates c1 = 0.5 and c2 = 0.25 (compression = 50%
and 75%) obtained in 10-fold cross-validation.

c1=0.50 c2=0.25
TE-C TE-E DE-C DE-E MEISR1 TE-C TE-E DE-C DE-E MEISR1

everage 1.201 1.148 1.253 1.153 1.068 1.354 1.537 1.420 1.484 1.227
times best 1 1 0 3 19 1 0 0 1 22

In Tables 9.7 and 9.8 always the lower values are better. The DROP3-RT algorithm
produced only a single solution. In order to compare the Pareto front produced by
our method with this point, we decided to use always the point with the fifth weakest
compression from the Pareto front, as it had much lower retention rate and only very
slightly higher rmse than the first point. Only in the case, where the rmse at this point
was higher than the rmse of DROP3-RT we switched to the first point (c1), but only
if this did not increase retention rate over the one of DROP3-RT.

The MEIRS1 evolutionary optimization allowed for obtaining significantly better
results than all the other methods. Only for the largest datasets the rmse obtained with
DROP3-RT was in several cases lower, but the compression of MEIRS1 was stronger.
And exactly this experiment allowed us to notice that there may be some problem
if the chromosome is too long. Later we added the solutions described in the next
chapter, which improved the results for big datasets in the MEISR2 method. Detailed
experimental results are provided in the next chapter.
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Table 9.8. Comparison in 10-fold cross-validation with DROP3-RT for regression
datasets for 8-NN. The values in the table: D1−R2 : relative 1 − R2 (ratio of 1 − R2,
where R2 is the correlation between the predicted and actual output, with instance se-
lection to 1−R2 without instance selection with DROP3-RT algorithm, M1−R2 : rela-
tiveR2 with Multi-objective Evolutionary Instance Selection for Regression (MISR1),
Mr2/Dr2: ratio of Mr2 to Dr2, Dc1: retention rate (1-compression) with DROP-RT al-
gorithm, Mc1: retention rate (1-compression) with MISR1, Mc1/Dc1r: ratio of Ec1 to
Dc1. (source: our work [105])

dataset D1−R2 M1−R2 M1−R2/D1−R2 Dc1 Mc1 Mc1/Dc1
machineCPU 1.541 1.263 0.819 0.495 0.374 0.756
baseball 1.160 1.134 0.978 0.460 0.395 0.859
dee 1.166 0.991 0.850 0.511 0.352 0.689
autoMPG8 1.210 1.118 0.924 0.491 0.421 0.857
autoMPG6 1.168 1.137 0.974 0.511 0.373 0.729
ele-1 1.023 0.892 0.873 0.486 0.353 0.725
stock 1.685 1.421 0.843 0.572 0.483 0.843
laser 1.436 1.079 0.751 0.605 0.455 0.752
concrete 1.351 1.235 0.914 0.502 0.465 0.926
treasury 1.346 1.500 1.114 0.620 0.439 0.707
mortgage 1.474 1.600 1.086 0.670 0.480 0.717
friedman 1.076 1.186 1.102 0.538 0.437 0.812
wizmir 1.329 1.140 0.858 0.510 0.410 0.803
wankara 1.355 1.103 0.814 0.521 0.444 0.853
plastic 0.964 0.833 0.864 0.419 0.390 0.930
quake 1.058 1.044 0.986 0.420 0.387 0.922
anacalt 1.551 1.172 0.755 0.483 0.422 0.874
abalone 1.053 1.034 0.982 0.416 0.389 0.935
delta-ail 1.039 1.001 0.963 0.433 0.364 0.841
puma32h 1.032 1.062 1.028 0.381 0.375 0.986
compactiv 1.557 1.066 0.685 0.449 0.391 0.870
delta-elv 1.016 1.011 0.995 0.432 0.376 0.870
ailerons 1.039 1.134 1.092 0.425 0.264 0.620
pole 1.425 1.696 1.190 0.245 0.244 0.996
elevators 1.137 1.135 0.998 0.438 0.358 0.816
california 1.048 1.105 1.055 0.475 0.402 0.845
house 1.084 1.041 0.969 0.430 0.318 0.741
mv 1.061 1.297 1.222 0.531 0.392 0.739
average 1.228 1.161 0.953 0.481 0.391 0.822
times best 21 7 0 28
t-test p 0.2105 0.0000
Wilcoxon p 0.0657 0.0000
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9.11 Classification Problems

The same methodology can be used for classification datasets. Fig. 9.9 shows a sam-
ple Pareto front obtained for the classification problem for LEd7 dataset. The only
difference is that the first criterion we minimize is (1 − accuracy) instead of rmse.
We compared experimentally the results of this approach with an ensemble of DROP5
methods. As DROP5 is one of the best similarity-based instance selection methods
and ensemble methods performed better than single methods, we wanted to compare
with the best alternative approach, which is able to generate Pareto fronts. In both
cases we used k-NN with optimal k as the final predictor.

Fig. 9.9. Sample Pareto front for the classification Led7 dataset obtained on a single
training-test set pair within a 10-fold cross-validation. The average over the whole
cross-validation gives much more regular fronts.

As for regression datasets, also for classification tasks in most cases better results
were obtained with the multi-objective evolutionary methods (Fig. 9.10-left). How-
ever, similarly, as for regression datasets, there were a few exceptions: where the
datasets were big and the classification accuracy obtained without instance selection
was very high, than the DROP5 ensembles tends to be better (Fig. 9.10-right).
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Fig. 9.10. Sample Pareto fronts (average over 10-fold cross-validation) on the test
set for the classification datasets: Left: Led7digit - this kind of results we obtained
for most datasets. Right: Penbased - only in a few cases the DROP5 ensembles were
better. Horizontal green lines show the baseline (accuracy without instance selection).
Note: vertical line is in logarithmic scale.

9.12 Other Solutions from Literature

We found only two works describing the application of multi-objective evolutionary
algorithms to instance selection, both to classification problems and both dated for late
2017.

In [115] the MOEA/D algorithm was used in a coevolutionary approach integrating
instance selection and generating the hyper-parameters for training an SVM just in
a similar idea as in [101]. The two criteria used in that optimization were the reduction
of the training set and the performance when such a reduction is used with a given set
of an SVM’s hyper-parameters. The average results over some classification datasets
were provided.

In [116] the authors considered also the over-fitting problem. At each iteration of
the genetic algorithm the training and validation partitions were updated in order to
prevent the prototypes from over-fitting a single validation dataset. Each time the par-
titions were updated, all of the solutions in the Pareto set were re-evaluated. However,
only the accuracy and reduction for 1-NN averaged over several classification prob-
lems was reported, similarly, as in the previous work, so it was not possible to compare
the results to other methods. Nevertheless, that is an interesting approach. We use in-
stead an early stopping of the optimization or a typical validation set.
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9.13 Conclusions

We proposed a methodology that allows to choose the optimal set of algorithms and
parameters depending on the dataset properties and on the defined priorities. The fol-
lowing detailed conclusions that show the advantages of the method can be drawn
from this chapter:

• The obtained results very in general very good, definitely better than the results of
the other compared methods.

• A significant advantage of the methodology is that we can obtain the entire Pareto
front of solutions. The user can choose one of them depending on his preferences
of the accuracy-compression values.

• k-NN is very well suited as the inner evaluation algorithm, because of its speed - the
distance matrix has to be calculated and sorted only once and then the prediction is
immediate.

• Proper initialization of the population plays important role, always in accelerating
the instance selection process and in some cases also in allowing to find the best
solution.

There are however still some areas for improvement, which are listed below and which
will be addressed in chapter 10 and 11:

• The first useful improvement will be to extend the Pareto Front in the direction of
low compression and low rmse, because frequently the solutions did not reach this
region.

• The second issue is improving the performance for the biggest datasets. Compari-
son with other instance selection methods showed that for small and medium size
datasets our methods has the greatest advantage over those methods. However,
for the largest datasets in half of the cases our method achieved lower 1-R2 and
stronger compression with 8-NN than the DROP3-RT method, but in the other half
of cases only stronger compression and lower 1-R2 was produced by DROP3-RT.
Our method optimized rmse and 1-R2 was used only for comparison and the re-
lation between rmse and 1-R2 is not linear, so it possible that using 1-R2 as the
criterion in the same way as the DROP3-RT used would produce better results.
The same can be said of DROP5 ensembles for instance selection in classification
tasks. However, because for smaller dataset the advantage of our method even with
optimization of different error measure was very significant, our first approach to
further improvement of the results on big datasets will focus on a balance between
the global exploration and local exploitation.

• The third improvement is reducing the complexity and running time of the algo-
rithm. The complexity for big datasets is now determining by the time of distance
matrix calculation.



Chapter 10
Additional Enhancements

Abstract In the previous two chapters we used single or multi-objective genetic algo-
rithms for instance selection. In this chapter we discuss some improvements, which
make the algorithms more complex, but allow for obtaining better results (lower Pareto
front). Regarding the calculation time, some of the improvements shorten it signifi-
cantly, while others extend it. However, the main idea of the chapter is to discuss the
improvements of the process results and the problem of computational complexity is
discussed in the next chapter.

10.1 Introduction

Multi-objective genetic algorithms, and especially NSGA-II, are very good in appli-
cation to instance selection, however, they are not free of some shortcomings. Here
we want to address two problems, which were most evident in our research: decrease
in solution quality for very long chromosomes and Pareto front contraction.

The main mechanism to obtain new solutions in genetic algorithms is crossover,
when a new child is created by concatenating parts of chromosomes from its parents.
The split points between the parts are set randomly. Unfortunately, when the chromo-
some is very long (thousands of positions or more) it becomes more and more difficult
to find such split points and such donors of particular parts of the chromosome, that
improving one part will not cause at the same time decreasing the quality of the other
part. Although the problem is known, in many of the applications of genetic algo-
rithms it is not such a big issue, because the optimization can run longer with the
hope that the proper solution will be finally found. However, in instance selection it is
a problem, as the optimal solution here is not the one performing best on the training
set, but the one with best generalization capabilities and running the process too long
is likely to cause over-fitting.

141
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The natural tendency of multi-objective genetic algorithms (not only of NSGA-II)
is to find most of the solutions which satisfy all criteria in a significant degree. As
a matter of fact, mostly the crossover operator is responsible for that, as when ran-
domly very different individuals generate a new child, the child will obviously tend
to be to a certain degree the average of them. Thus we do not get solutions at the
edges of the objective space, and there are no solutions with very strong compression
and no solutions with very week compression. The lack of solutions with very strong
compression is not a problem, because those solutions also have very low prediction
quality and as a result we are not interested in them. However, the lack of week com-
pression solutions may be a problem, because in many cases these solutions will have
very good prediction quality, as only a few very noisy instances were removed from
them.

In this chapter we discuss the approaches to both of the problems and show how
they can help to obtain better quality results.

10.2 Data Space Partitioning

For big datasets, there is a problem with determining the optimal stopping point, as in
some areas of the dataset the optimization converges faster than in others. Goldberg
wrote that evolutionary algorithms work "by building short, low order, and highly
fit schemata (blocks), which are recombined (crossed over), and re-sampled to form
strings of potentially higher fitness" [1]. In this way, the over-fitting already may start
occurring within such a block, while in other parts of the chromosome still more
iterations are required to approach the optimal point. Another issue is that genetic al-
gorithms frequently are less efficient if the chromosome is too long (ten of thousands
of positions), that is they require more iterations to converge.

To remedy this problem, data partitioning can be used. It allows to run the opti-
mization in particular areas of the dataset for an optimal number of iterations. Data
partitioning is a more effective solution in the regression problems. That is because in
regression problems the changes tend to be more smooth and more equally distributed
in data space. In classification problems it is important to preserve the decision bound-
aries and while partitioning the data space we must take a special care not to split the
data along or close to the decision boundaries, because instance selection will simply
not work withing such partitions. So designing the possible splits would be a complex
task and we have not undertaken this research topic yet. Thus, as for now we present
only dataset partitioning in instance selection for regression tasks.

Moreover, using the data partitioning, we do not need to calculate the entire dis-
tance matrix used by k-NN, but only the distances to several nearest neighbors to each
instance. How can we know, which neighbors are nearest, before we calculate the dis-
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tance to them? Here we can use some clustering, to split the data into several clusters
and then calculated the distance only withing the clusters.

We use the k-means clustering to partition the N instances of the training set into
C sets (clusters) S1, S2, . . . , Sc in order to minimize the within-cluster sum of squares
(or variance):

arg min
S

C∑
c=1

∑
x∈Sc

‖x− µc‖
2

= arg min
S

C∑
c=1

|Sc|VarSc (10.1)

where c is the number of the cluster. K-means is a well known algorithm and its
description can be easily found in the literature [117] so we do not describe it here.
However, it is worth mentioning, that we use also the output variable of the instances
as one of the input variables to the clustering, as this proved to produce more adequate
results for the purpose of instance selection.

Of course not each optimization problem can be partitioned in this way, because
frequently there are mutual interactions between many positions in the chromosome.
However, in the case of predicting the output in regression tasks it can be done, be-
cause there are no interactions between very remote instances.

Fig. 10.1. The exact and the extended clusters. For example: the base cluster c3 is
limited by the black lines. The extended cluster c3 contains also the instances in the
red zone. The gray zones contain the additional instance of other extended clusters.

Fig. 10.1 shows a dataset with two features f1 and f2 partitioned into four clusters
c1, c2, c3 and c4 with the thick black lines. The red zone represents the boundaries
of the extended cluster c3; this is the cluster itself and all instances from the other
clusters that are the nearest neighbors of any instance from the c3 cluster.
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Algorithm 10 Evolutionary instance selection with dataset partitioning
Partition the m− th training Tm set into C clusters
Optionally determine the extended clusters E for each of the C clusters
for c=0 . . .C do

Generate initial currentPopulation of P individuals
calculate fitness f (Eq. 11.1,11.2,11.3) for currentPopulation individuals
for i=0 . . .numIterations do

apply the crossover operation to generate the newPopulation of P individuals
calculate fitness f (Eq. 11.1,11.2,11.3) for newPopulation individuals
sort together currentPopulation and newPopulation individuals by fitness
select the best P individuals into currentPopulation
apply the mutation operation

end for
end for
Merge the selected instances from all C clusters to form the final reduced training
set Tmr
calculate the retentionm of the training set Tmr
calculate the rmsem on the corresponding test set Sm using the predictor trained
on Tmr

This approach allows usually for improving both criteria: obtaining lower retention
with slightly lower rmse, but definitely the retention gets more improved than rmse.
This is caused by the "boundary effect"; this is we can observe some problems with
the instances that are so close to the cluster borders that part of their nearest neighbors
belong to another cluster. When we want to predict the output of such an instance using
only the neighbors from its own cluster, the results are inadequate. This causes that
we cannot further decrease rmse using only that approach. Moreover, the decreasing
prediction error inside the clusters is partially canceled out by the increasing error on
the borders of the clusters. As a result the optimal size of the cluster exists, which in
our experimental evaluation ranged on average from 500 to 1.000 instances.

In order to further improve the results, in [118] we proposed to use a pair of datasets
for each cluster: the dataset that is the current cluster Tc and the extended dataset Te
which consists of the current cluster Tc and all k nearest neighbors of all instances
from Tc, no matter to which cluster they belong, as shown in Fig. 10.1. We perform
instance selection only within Tc, so only the instances from Tc are considered for re-
moval. However, while predicting with k-NN the outputs of instances from Tc (which
we need to obtain rmse), all the instances from Te are considered as their potential
neighbors. The method is shown in Algorithm 10.

In this work we applied this approach also to the multi-objective evolutionary in-
stance selection for regression tasks and we are happy that the improvement achieved
by this approach is even bigger than in the single-objective method.
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10.3 Multiply Fronts to Extend Range and Prevent Over-fitting

As the optimization with NSGA-II progresses, the Pareto front gradually extends, as
will be explained later. So the first approach in a typical optimization process, where
the genetic algorithms optimize directly the final objectives is to increase the number
of iterations. But this will be still only a partial solutions to some problems, as the
front will not extend fully.

Instance selection belongs to a different class of problems, because, we perform the
optimization on the training set and the test set is unknown during the optimization,
yet one of the objectives is rmse on the test. Thus increasing the number of iterations
will likely cause over-fitting. To prevent over-fitting we have to use early stopping
(which can be also implemented by observing she error on a validation set). However,
the two conditions are mutually exclusive. To clarify this, we will explain the process
of Pareto front formulation during the NSGA-II optimization.

At the beginning of the optimization, all positions in all chromosomes have random
values. As a result in the rmse - compression space all individuals (all datasets) are
located very close to each other (although special initialization techniques, which were
discussed, can partially mitigate this problem), and all have relatively poor balance of
rmse - compression. This is shown in Fig. 10.2-a, where the points in blue represent
the dominated solutions on the training set, the green points connected with the green
line represent the Pareto Front on the training set. Each solution (each training set of
selected instances) on the Pareto front is used to train the model. The result of the
model prediction on the test set is marked with the corresponding orange point (both
points: the orange and the green use the same training set of selected instances, hence
they have the same compression value - the compression of the selected training set).

The baseline represented by the purple line in Fig. 10.2 is the rmse on the training
set obtained by the regressor trained on the original dataset (without instance selec-
tion).

As the optimization progresses, the points move gradually to the positions shown in
Fig. 10.2-b and then to Fig. 10.2-c. But before they reach the positions in Fig. 10.2-c,
already the over-fitting starts to occurs (the green line in Fig. 10.2-c is lower than in
Fig. 10.2-b, and the orange line is situated higher).

However, when we use more fronts, we can reach the solutions with low compres-
sion and low rmse with fewer iterations before the over-fitting starts to occur as in
Fig. 10.3-c.(the green line is lower in Fig. 10.3-c is lower than in Fig. 10.3-b, and the
orange line is also lower).

Frequently we do not need the front to be extended in the direction of low com-
pression (high retention rate), because the lowest rmse is already reached below the
baseline in Fig. 10.3-b and it will be probably not possible to improve it anymore. In
these cases it is enough to generate only the first Pareto Front (and that was the case
in about 50% of our experiments).
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However, if the lowest rmse is at or above the baseline, we may want to search for
a solution with still lower rmse. In this case we need to obtain also the other fronts,
which we call sub-fronts, to cover a broader space without over-fitting. The sub-fronts
are obtained by generating the initial populations with various probabilities of 0 and 1,
and then, in the mutation operator, using different probabilities of changing 0 to 1 and
1 to 0 so that the percentage of ones and zeros in the chromosomes remain relatively
constant. Finally the sub-fronts will be merged into one Pareto Front (and thus some
points from some sub-front may not be included in the final front, if the points from
another sub-front satisfy better both objectives).

Fig. 10.2. Forming of a single Pareto front during instance selection process.

Fig. 10.3. Forming of a Pareto front using three sub-fronts during instance selection
process.
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The whole instance selection process consists of the following steps:

1. Optionally split the data into partitions and perform the remaining steps indepen-
dently inside each data partition.

2. The distance matrices of the training set are computed and sorted, as discussed in
the previous chapters.

3. The population is randomly generated with an average 0.5 probability of 0 and
1 at each position (the probability of each instance being selected and rejected is
approximately equal).

4. NGSA-II (or other multi-objective genetic algorithm) is used as the search engine
in the solution space with all the tunings and improvements discussed in the pre-
vious chapters.

5. The rmse on the training set is evaluated to determine if there is a need for
generating additional Pareto fronts. If the rmsetrn is lower than 90% of the
rmsetrn before instance selection or classification accuracy on the training set is
100% then the process terminates. If rmsetrn is higher or accuracy is lower, then
the following steps are performed (optionally the steps below can be performed
also if rmsetrn decreased more than 10%):

a. The population is randomly generated with 0.2 probability of 0 and 0.8 proba-
bility of 1 at each position (the probability of each instance being selected is 0.8
and being rejected is 0.2)

b. NGSA-II (or other multi-objective genetic algorithm) is used as the search en-
gine in the solution space with all the tunings and improvements discussed in
the previous chapters. An unsymmetrical mutation operator is used to keep the
approximate proportions of selected and rejected instances. The chance of mu-
tation from 0 to 1 is four timer higher than from 1 to 0.

c. The rmse on the training set is evaluated to determine if there is a need for
generating additional Pareto fronts. If the rmsetrn is lower than 90% of the
rmsetrn before instance selection or classification accuracy on the training set
is 100% then the process terminates. If rmsetrn is higher or accuracy is lower,
then the following steps are performed (optionally the steps below can be per-
formed also if rmsetrn decreased more than 10%):
i. The population is randomly generated with 0.08 probability of 0 and 0.92

probability of 1 at each position (the probability of each instance being se-
lected is 0.92 and being rejected is 0.08)

ii. NGSA-II (or other multi-objective genetic algorithm) is used as the search
engine in the solution space with all the tunings and improvements discussed
in the previous chapters. An unsymmetrical mutation operator is used to keep
the approximate proportions of selected and rejected instances. The chance
of mutation from 0 to 1 is 11.5 timer higher than from 1 to 0.

6. All the Pareto fronts are merged together (one, two or three fronts - depending if
the two additional populations were generated) to form a single Pareto front.
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7. There are two options if data partitioning was used. The first option: the selected
instanced from corresponding regions of the Pareto front are merged into single
datasets. The second option: multiply final predictive models are used; each trained
on one partition of the data and the test vectors are processed by the model trained
on the partition closest to the test instance.

10.4 Other Solutions from Literature

Partitioning the search space can be useful to prevent splitting the already created
blocks in genetic algorithms and some researchers tried this approach. In [119] a dif-
ferential evolutionary algorithm with space partitioning was implemented by divi-
ding the search variables into groups of partitions, so each partition contained a certain
number of variables and was manipulated as a subspace in the search process. In [120]
the search space partitioning was applied to multi-objective genetic algorithms.

Partitioning of the training set was applied to instance selection by de Haro-García
and García-Pedrajas [32]. However, the problem with this method is that its perfor-
mance is degraded for some problems. For the case of instance selection using a ge-
netic algorithm, the authors found that the evolutionary algorithm was too conservative
when applied to subsets of the datasets. Thus, many useless instances where retained
[32]. This problem was addressed with a recursive application of the stratified ap-
proach. After a first application of the stratification and the evolutionary algorithm to
the different strata, a new round of stratification was applied with the selected values.
This recursive approach was applied until a certain criterion was met. Although this
method works for instance selection, its not clear if it could be applied to other prob-
lems.

Czarnowski [121, 122] introduced an instance selection method that incorporates
several ideas. First clustering was performed on the data and then, within the clusters,
the selection was executed by a team of agents. The agents cooperated by sharing
a population of solutions and refined the solutions using local search.

One step forward in sampling techniques was developed for instance and feature
selection by García-Osorio et al. [65]. This method combines the divide-and-conquer
approach of sampling with the combination principle of the ensembles of classifiers.
The method is composed of three basic steps: (i) divide the problem data into small
disjoint subsets, (ii) apply the learning algorithm of interest to every subset separately
(iii) combine the results of the different applications. The first two steps are repeated
several times. As the learning method is always applied to small datasets, the the
method is quite fast. As the method combines results of the application of the same
learning models to different subsets of the available dataset, it was called by the au-
thors democratization of algorithms.
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10.5 Experimental Evaluation

W present the results obtained with and without data partitioning and merging up to
three Pareto fronts if required. The experimental process is almost the same as shown
in Figs. 13.1 and 13.2 with the difference that the test block contains either k-NN
or an MLP algorithm and not the four algorithms shown in those figures. For single-
objective algorithms we present the results from our work [118] only for the regression
datasets larger than 1,500 instances (Tables 10.1 and 10.5), as there was the biggest
improvement for these datasets. For multi-objective algorithms we present the results
for most of the regression datasets from the Keel repository [8]. The base results come
from our work [105] and the results with data partitioning are presented here the fist
time. The symbols in the tables: rr1 = r1/r0, rr1p = r1/r0 with data partitioning,
rr2 = r2/r0, rr2p = r2/r0 with data partitioning, rr3 = r3/r0, rr3p = r3/r0 with
data partitioning. For explanation of the symbols r0, r1, r2, r3 see chapter 9, section
9.4.

Table 10.1. Experimental results for single-objective algorithms: inner evaluation al-
gorithm: 1-NN, final prediction model: 1-NN, r0 - rmse without instance selection,
r1, r2 - rmse with instance selection without data partitioning, r1p, r2p - rmse with
data partitioning for α=0.9 and 0.8 (lower is better), c1, c2, c1p, c2p - corresponding
retention rates (lower is better).

dataset r0 r1 r1p c1 c1p r2 r2p c2 c2p
wankara 0.225 0.222 0.209 0.679 0.623 0.290 0.266 0.147 0.136
plastic 0.617 0.542 0.513 0.718 0.674 0.607 0.589 0.202 0.192
quake 1.344 1.153 1.134 0.672 0.607 1.342 1.296 0.148 0.133
anacalt 0.227 0.232 0.211 0.482 0.470 0.282 0.280 0.194 0.171
abalone 0.915 0.768 0.747 0.697 0.655 0.872 0.844 0.163 0.154
delta-ail 0.716 0.630 0.629 0.618 0.593 0.744 0.740 0.141 0.135
puma32h 1.212 1.025 1.004 0.673 0.644 1.202 1.207 0.165 0.154
compactiv 0.254 0.295 0.295 0.434 0.414 0.307 0.307 0.236 0.216
delta-elv 0.828 0.708 0.710 0.663 0.623 0.838 0.819 0.136 0.128
tic 1.366 1.130 1.118 0.704 0.681 1.330 1.312 0.148 0.142
ailerons 0.657 0.585 0.580 0.596 0.583 0.701 0.688 0.142 0.139
pole 0.244 0.258 0.258 0.662 0.648 0.349 0.335 0.137 0.131
elevators 0.686 0.641 0.635 0.669 0.651 0.763 0.730 0.173 0.151
california 0.654 0.596 0.582 0.676 0.655 0.711 0.703 0.143 0.135
house 0.872 0.775 0.766 0.645 0.625 0.929 0.924 0.141 0.137
mv 0.210 0.199 0.199 0.728 0.721 0.302 0.300 0.164 0.160
average 0.689 0.610 0.599 0.645 0.617 0.723 0.709 0.161 0.151
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Table 10.2. Experimental results for binary instance selection: retention and relative
rmse with inner evaluation algorithm 1-NN and final prediction model 1-NN. The
symbols are explained at Table 10.1.

dataset rr1 rr1p c1 c2p rr2 rr2p c2 c3p rr3 rr3p c3 c3p
mach.CPU 1.159 0.385 1.212 0.216 1.000 0.914
baseball 0.878 0.662 0.899 0.559 0.878 0.662
dee 0.811 0.652 0.918 0.401 0.811 0.652
autoMPG8 0.904 0.685 1.127 0.155 0.904 0.685
autoMPG6 1.042 0.698 1.242 0.150 0.985 0.920
ele-1 0.929 0.678 0.966 0.619 0.929 0.678
forestFires 0.496 0.344 0.514 0.191 0.496 0.344
stock 1.175 0.629 1.692 0.155 1.000 0.918
steel 0.911 0.469 1.154 0.369 0.911 0.469
laser 1.192 0.467 1.324 0.221 1.000 0.911
concrete 1.117 0.696 1.441 0.155 1.000 1.000
treasury 1.259 0.662 1.693 0.159 1.000 0.916
mortgage 1.284 0.545 1.784 0.287 1.000 0.926
friedman 0.959 0.959 0.692 0.688 1.288 1.247 0.148 0.155 0.959 0.959 0.692 0.692
wizmir 0.919 0.919 0.693 0.644 1.311 1.280 0.160 0.163 0.919 0.919 0.693 0.677
wankara 0.966 0.947 0.692 0.619 1.285 1.253 0.160 0.154 0.966 0.963 0.692 0.657
plastic 0.879 0.834 0.682 0.617 0.983 0.950 0.212 0.180 0.879 0.871 0.682 0.669
quake 0.856 0.843 0.685 0.599 1.003 0.974 0.157 0.145 0.856 0.843 0.685 0.644
anacalt 1.000 0.908 0.449 0.425 1.260 1.236 0.186 0.157 0.977 0.969 0.887 0.865
abalone 0.845 0.821 0.685 0.629 0.962 0.920 0.155 0.127 0.845 0.838 0.685 0.651
delta-ail 0.877 0.871 0.685 0.635 1.031 1.002 0.159 0.165 0.877 0.869 0.685 0.663
puma32h 0.845 0.826 0.689 0.641 1.000 0.979 0.161 0.138 0.845 0.839 0.689 0.676
compactiv 1.177 1.177 0.429 0.401 1.172 1.131 0.237 0.206 0.926 0.916 0.847 0.825
delta-elv 0.851 0.849 0.685 0.621 1.010 0.976 0.157 0.126 0.851 0.849 0.685 0.658
tic 0.827 0.815 0.685 0.641 0.973 0.958 0.156 0.157 0.827 0.822 0.685 0.648
ailerons 0.889 0.874 0.688 0.653 1.079 1.035 0.160 0.154 0.889 0.882 0.688 0.672
pole 1.055 1.048 0.686 0.649 1.443 1.391 0.157 0.135 1.000 0.991 0.922 0.879
elevators 0.930 0.918 0.687 0.648 1.114 1.076 0.162 0.167 0.930 0.925 0.687 0.646
california 0.911 0.883 0.686 0.611 1.099 1.075 0.158 0.126 0.911 0.897 0.686 0.661
house 0.888 0.875 0.684 0.515 1.061 1.042 0.159 0.144 0.888 0.875 0.684 0.658
mv 0.941 0.936 0.686 0.554 1.387 1.349 0.158 0.148 0.941 0.936 0.686 0.673
average 0.923 0.906 0.659 0.600 1.137 1.104 0.167 0.153 0.905 0.898 0.720 0.695
av-total 0.960 0.627 1.175 0.214 0.910 0.740
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Table 10.3. Experimental results for binary instance selection: retention and relative
rmse with inner evaluation algorithm: optimal-k k-NN and final prediction model:
optimal-k k-NN. The symbols are explained at Table 10.1.

dataset rr1 rr1p c1 c2p rr2 rr2p c2 c3p rr3 rr3p c3 c3p
mach.CPU 1.053 0.436 1.168 0.213 0.964 0.852
baseball 0.998 0.450 1.112 0.217 0.998 0.450
dee 1.008 0.403 1.035 0.229 0.986 0.928
autoMPG8 1.078 0.458 1.134 0.218 0.978 0.927
autoMPG6 1.043 0.424 1.074 0.228 0.921 0.944
ele-1 0.954 0.533 1.002 0.367 0.954 0.533
forestFires 0.839 0.340 0.840 0.162 0.839 0.340
stock 1.181 0.486 1.386 0.340 0.990 0.954
steel 1.022 0.444 1.302 0.224 1.000 0.934
laser 1.031 0.435 1.280 0.208 0.955 0.926
concrete 1.054 0.488 1.244 0.193 1.000 0.929
treasury 1.321 0.486 1.768 0.234 1.000 0.927
mortgage 1.304 0.489 2.387 0.156 1.000 0.923
friedman 1.073 1.071 0.472 0.453 1.297 1.256 0.162 0.135 1.000 1.000 0.947 0.932
wizmir 1.060 1.054 0.470 0.440 1.297 1.258 0.214 0.208 1.000 0.988 0.779 0.764
wankara 1.098 1.076 0.497 0.451 1.315 1.261 0.160 0.135 1.000 0.989 1.000 1.000
plastic 0.969 0.961 0.446 0.414 0.996 0.968 0.212 0.182 0.969 0.965 0.446 0.407
quake 0.983 0.960 0.685 0.639 1.001 0.973 0.219 0.213 0.983 0.973 0.685 0.632
anacalt 1.013 1.005 0.440 0.414 1.330 1.269 0.174 0.149 0.988 0.982 0.684 0.646
abalone 1.011 0.991 0.682 0.624 1.068 1.015 0.158 0.128 0.981 0.972 0.801 0.741
delta-ail 1.033 1.016 0.686 0.634 1.078 1.029 0.158 0.160 1.000 0.994 0.835 0.783
puma32h 1.014 1.000 0.461 0.438 1.027 1.020 0.222 0.201 1.000 1.000 1.000 0.940
compactiv 1.209 1.175 0.461 0.421 1.238 1.201 0.275 0.241 1.000 1.000 1.000 1.000
delta-elv 1.016 1.001 0.684 0.624 1.029 0.984 0.225 0.206 1.000 0.991 1.000 0.971
tic 0.980 0.974 0.684 0.634 0.996 0.973 0.186 0.156 0.980 0.968 0.684 0.638
ailerons 1.031 1.014 0.473 0.427 1.092 1.062 0.263 0.236 1.000 0.996 0.934 0.886
pole 1.125 1.105 0.491 0.449 1.219 1.183 0.307 0.288 1.000 0.996 0.947 0.896
elevators 1.040 1.018 0.448 0.409 1.112 1.058 0.226 0.220 1.000 0.996 1.000 1.000
california 1.037 1.020 0.488 0.434 1.083 1.055 0.332 0.293 1.000 1.000 0.944 0.881
house 1.029 1.005 0.483 0.419 1.074 1.022 0.276 0.246 1.000 1.000 0.894 0.849
mv 1.136 1.113 0.492 0.404 1.311 1.249 0.273 0.221 1.000 0.994 1.000 0.933
average 1.048 1.031 0.530 0.485 1.142 1.102 0.225 0.201 0.995 0.989 0.866 0.828
av-total 1.056 0.497 1.203 0.227 0.983 0.843
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Table 10.4. Experimental results for binary instance selection: retention and relative
rmse with inner evaluation algorithm optimal-k k-NN and final prediction model:
MLP neural network. The symbols are explained at Table 10.1.

dataset rr1 rr1p c1 c2p rr2 rr2p c2 c3p rr3 rr3p c3 c3p
mach.CPU 1.089 0.436 1.261 0.213 1.000 1.000
baseball 1.048 0.450 1.198 0.217 1.000 1.000
dee 1.012 0.403 1.153 0.229 0.992 0.928
autoMPG8 0.948 0.458 1.187 0.218 0.942 0.927
autoMPG6 0.924 0.424 1.141 0.228 0.914 0.944
ele-1 0.920 0.533 1.040 0.367 0.917 0.533
forestFires 0.952 0.340 1.014 0.162 0.940 0.340
stock 0.958 0.486 1.016 0.340 0.945 0.954
steel 0.882 0.444 0.885 0.224 0.872 0.934
laser 0.988 0.435 1.011 0.208 0.975 0.926
concrete 1.017 0.488 1.097 0.193 1.000 0.929
treasury 0.970 0.486 1.042 0.234 0.968 0.927
mortgage 0.975 0.489 1.088 0.156 0.958 0.923
friedman 0.992 0.983 0.472 0.453 1.159 1.148 0.162 0.135 0.985 0.972 0.947 0.932
wizmir 1.013 1.002 0.470 0.440 1.027 1.013 0.214 0.208 1.000 1.000 1.000 0.764
wankara 0.978 0.968 0.497 0.451 1.004 0.998 0.160 0.135 0.968 0.965 1.000 1.000
plastic 0.990 0.985 0.446 0.414 0.995 0.959 0.212 0.182 0.990 0.983 0.446 0.407
quake 0.992 0.983 0.685 0.639 1.017 0.993 0.219 0.213 0.992 0.982 0.685 0.632
anacalt 0.898 0.895 0.440 0.414 1.096 1.089 0.174 0.149 0.894 0.891 0.684 0.646
abalone 0.998 0.985 0.682 0.624 1.006 1.000 0.158 0.128 0.997 0.988 0.801 0.741
delta-ail 0.997 0.987 0.686 0.634 1.005 0.973 0.158 0.160 0.993 0.992 0.835 0.783
puma32h 1.103 1.093 0.461 0.438 1.283 1.259 0.222 0.201 1.000 1.000 1.000 0.940
compactiv 1.018 1.008 0.461 0.421 1.042 1.003 0.275 0.241 1.000 0.996 1.000 1.000
delta-elv 0.998 0.988 0.684 0.624 1.009 1.000 0.225 0.206 0.995 0.989 1.000 0.971
tic 1.000 0.991 0.684 0.634 1.050 1.043 0.186 0.156 0.993 0.985 0.684 0.638
ailerons 1.018 1.011 0.473 0.427 1.041 1.014 0.263 0.236 1.000 1.000 1.000 0.886
pole 1.038 1.000 0.491 0.449 1.188 1.157 0.307 0.288 1.000 0.991 1.000 0.896
elevators 1.011 0.998 0.448 0.409 1.013 1.013 0.226 0.220 1.000 1.000 1.000 1.000
california 0.997 0.983 0.488 0.434 0.999 0.991 0.332 0.293 0.985 0.976 0.944 0.881
house 1.005 1.005 0.483 0.419 1.017 1.010 0.276 0.246 1.000 1.000 1.000 0.849
mv 1.005 1.001 0.492 0.404 1.009 0.985 0.273 0.221 0.991 0.988 1.000 0.933
average 1.003 0.993 0.530 0.485 1.053 1.036 0.225 0.201 0.988 0.983 0.890 0.828
av-total 0.991 0.497 1.068 0.227 0.974 0.880
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Table 10.5. Experimental results for single-objective algorithms: inner evaluation al-
gorithm: optimal-k k-NN, final prediction model: optimal-k k-NN, symbols are ex-
plained at Table 10.1

dataset r0 r1 r1p c1 c1p r2 r2p c2 c2p
wankara 0.167 0.183 0.171 0.447 0.420 0.217 0.217 0.154 0.146
plastic 0.468 0.452 0.452 0.427 0.398 0.466 0.466 0.219 0.198
quake 1.025 1.009 1.010 0.676 0.611 1.030 1.029 0.211 0.200
anacalt 0.212 0.212 0.211 0.480 0.459 0.274 0.273 0.167 0.163
abalone 0.702 0.708 0.705 0.681 0.640 0.756 0.755 0.141 0.132
delta-ail 0.560 0.575 0.572 0.692 0.585 0.605 0.607 0.167 0.148
puma32h 0.896 0.909 0.911 0.477 0.458 0.910 0.905 0.215 0.206
compactiv 0.231 0.277 0.267 0.507 0.463 0.288 0.285 0.258 0.242
delta-elv 0.610 0.622 0.625 0.700 0.613 0.622 0.624 0.230 0.202
tic 1.015 0.996 0.989 0.680 0.656 1.014 1.009 0.177 0.160
ailerons 0.504 0.519 0.516 0.477 0.469 0.555 0.551 0.255 0.231
pole 0.214 0.236 0.233 0.487 0.478 0.254 0.252 0.303 0.302
elevators 0.559 0.577 0.572 0.465 0.451 0.625 0.620 0.207 0.205
california 0.527 0.549 0.551 0.527 0.516 0.579 0.580 0.336 0.324
house 0.687 0.708 0.708 0.563 0.538 0.727 0.721 0.269 0.261
mv 0.140 0.160 0.160 0.488 0.484 0.187 0.186 0.251 0.242
average 0.532 0.543 0.541 0.548 0.515 0.569 0.567 0.222 0.210
Wilcox. p-value 0.04236 0.00044 0.02382 0.00044

When we compared the results of the evolutionary-based instance selection with
the instance selection performed by the regression version of the DROP-3 algorithm
[30] (which according to the comparative study in [102] was one of the best classical
instance selection algorithms), then for smaller datasets the differences were huge:
the evolutionary method was much better, but for the dataset sizes of about 10.000
instances the differences begun to get much smaller. Introducing the data partitioning
and performing the instance selection separately inside each partition again allowed
for gaining advantage over the DROP-3 results as for the smaller datasets.

10.6 Conclusions

We discussed two improvements of evolutionary instance selection. The first one is
data space partitioning, which is mostly useful in regression problems and big datasets.
The second one is generating multiply Pareto fronts, which can be useful in regression
and classification problems with any dataset size.
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The following detailed conclusions can be drawn from this study:

• As instance selection together with many other problems is performed on the train-
ing set, over-fitting can occur if the optimization is run too long. Thus, running
the algorithm for more iterations is not a solution to improve the results. However,
splitting the data into several optimization problems can be successfully applied.
Therefore we believe that this approach can be useful also to other problems, where
the search space is big and there is no significant interactions between points being
far apart.

• The multi-objective evolutionary instance selection method works as well for clas-
sification as for regression problems and the properties of the method are similar
for both types of problems. We discussed the methods using mostly regression
problems and only shortly presented results for classification problems.

• The obtained results were better when optimizing both criteria: compression and
accuracy than for single-objective evolutionary-based instance selection.

• It is optimally if the inner evaluation algorithm is the same as the final predictor.
For that reason we used 1-NN as the internal evaluator, when 1-NN was used as
the final regressor. We used k-NN with optimal k for the MLP neural network final
predictor, as a reasonable trade-off between the accuracy and computational cost
of this solution.

• Using instance weighting did not work as well as we excepted. However, we no-
ticed two areas where it can provide better results than binary instance selection: 1.
for very high compression it is usually able to achieve lower rmse (although the
rmse is in any case relatively high in this region), 2. for noisy datasets, that require
high k value in k-NN [7].

• It is easier to reduce rmse with instance selection for more noisy data, with higher
rmse without instance selection.

• We did not observe any dependency between the compression properties and the
data distribution, nor any significant change of the distribution after instance selec-
tion.

• We obtained better results than other 12 instance selection methods for regression,
for which we were able to get the detailed results for particular datasets to perform
the comparison.

• The experiments proved that multiply Pareto fronts allow for extending the final
front in both direction and especially to obtain lower rmse comparing to the base
algorithm.

• Data partitioning allowed for the additional reduction of data size and for some
additional reduction of rmse. For the datasets larger than 1000 instances, where
the improvements are especially beneficial, we were able to reduce the dataset size
by on average 5.5% and at the same time to reduce the rmse by about 1.5% for
single objective algorithm. For multi-objective algorithms the improvement was
even bigger.



Chapter 11
Optimization of Evolutionary Instance Selection

Abstract There are several factors, which influence the speed of instance selection
based on genetic algorithms. In this chapter we discuss crossover operations, popula-
tion size, reduction of chromosome length, fitness function, population initialization,
generational vs steady state algorithms and accelerating distance matrix calculation.

11.1 Introduction

The factors, which influence the speed of convergence of genetic algorithm based
instance selection can be divided into those that are more specific to genetic algorithms
and those that are more specific to instance selection. We evaluate both of the groups,
starting from the first one.

Genetic algorithms are in many cases able to convert to the optimal solution even
without optimal parameters, especially in simple problems, optimized directly on the
target. Optimizing the parameters allows for significant reduction of computational
cost and in more complex problems (e.g. instance selection) also for finding the best
solution. In chapter 7 we discussed the elitism and steady state genetic algorithms.
However, we should be aware that on parallel architectures the optimal parameters
can be different than those determined for a single CPU core optimization.

Using only one CPU core the convergence time would be approximately propor-
tional to the number of fitness function evaluations. However, with multiply CPU cores
available in all modern computers, as well as with GPU implementations, it changes,
as many operations can be run in parallel. Moreover, it is not always easy to effectively
parallelize evaluation of fitness function and it is much easier to evaluate the fitness
of several individuals in parallel, especially in the case of instance selection. That is
an important factor in deciding if we should use generational or steady state genetic
algorithms.
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In generational genetic algorithms, the whole new population is created and then it
replaces the old population. Three basic mechanisms of the replacement are possible:

1. The new population entirely replaces the old population.
2. We use elitism, and together with the child individuals, the best predefined number

of parent individuals are promoted to the next generation.
3. We sort the children and parents together by their fitness function and the most

fitted individuals are promoted to the next generation, no matter if they are children
or parents.

It is usually the easiest to organize the program in this way that the fitness function
of a single individual is evaluated by one CPU core and for that reason steady state
algorithms, although require fewer fitness function evaluations are frequently not the
fastest solution, as the implementation may not scale well in parallel.

In steady state algorithms, immediately after a new individual is generated it re-
places one of the old individuals, usually either the least fitted or the most similar
to the new one. In this way the population changes faster and indeed fewer fitness
function evaluations can be required for the whole process [83, 123]. However, this
approach is not always effective to parallelize, especially if the fitness function evalu-
ation is fast, because caution must be taken that two threads do not try to modify the
same individual at the same time. We can solve it with locks, but then another problem
appears, if one individual has already been replaced by the new one, the other thread
that wanted to replace the same individual will have to find another one to modify.
In this case a simpler and more effective solution can be to use a combination of
generational and steady state algorithms. For example, if there are P=96 individuals
in the population and our computer has C=24 or 48 CPU cores, we can first generate
in parallel C new individuals and then update the population. The number of available
CPU cores C can also influence the decision of the population size. In this case the
optimal population size will be a multiply of C. In some cases with CPU implemen-
tations and in probably all cases with GPU implementation it may happen that the
number of available cores is larger than the optimal population size (by optimal we
understand the population size that allows for the lowest number of fitness function
evaluations) and in such a case it is recommended to increase the population size over
the one optimal for a single CPU core processing.

Further we discuss optimization of the process parameters, but as it was already
mentioned, depending on the available hardware sometimes the process can run faster
not using exactly the optimal parameters that we present, but adjusting them to the
hardware architecture.
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11.2 Optimization of Genetic Algorithms Parameters

Our purpose was to examine how convergence time depends on several parameters. In
the experiments we used datasets from 200 to 40.000 instances.

All the experiments presented in this chapter were performed with our software
written in C# using as well single-thread processing as Task Parallel Library on
a computer with two Xeon E5-2696v2 processors (24 physical CPU cores with hyper-
threading turned off and 64 GB RAM).

11.2.1 Population Size and Multi-parent Crossover

First we evaluated the influence of population size on the required number of fitness
function evaluations. The discussion presented in this section holds true as well for
single-objective as for multi-objective evolutionary instance selection. Although some
differences exist, the tendencies are the same. The required number of fitness function
evaluation was determined as the point beyond which the solutions no longer improve.
In particular cases the number of evaluations depend on many parameters, however for
other parameters fixed the dependencies look like these shown in Fig. 11.1 and 11.2,
where they were determined for a single objective algorithm.

In the next series of experiments we determined the optimal number of parents of
one descendant. An approximate optimum that we obtained for the number of parents
is from one for each ten positions in the chromosome for smaller datasets up to one for
each hundred positions for larger datasets. The convergence of generational or mixed
genetic algorithms with that many parents was over three times faster than with two
parents only. Moreover, it provided a higher diversity in the recombination process, so
smaller population was needed. The results are shown in Fig. 11.1.

Then we evaluated the influence of population size on the required number of fit-
ness function evaluations. The optimal population size very slightly increases with the
chromosome length in the examined range from 200 to 40.000 instances we can as-
sume it is between 70 and 100 and we used the population of 96 individuals with our
24 and 48 CPU core systems to obtain optimal performance. For a bit smaller popula-
tions (e.g. 50 individuals) the average convergence time can be slightly shorter, but the
process is less stable: the standard deviation is higher and occasionally the algorithm
does not converge at all. The experimental results are shown in Fig. 11.2 with other
parameters constant and close to optimal. The area to the left of the black stability
line in Fig. 11.2 represents unstable solutions, that is the further to the left of this line
the higher the probability that the evolutionary process will not converge to any good
solution.
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Fig. 11.1. Dependency of the number of fitness function evaluations on the number
of crossover points (which in our case equals number of parents - 1) with the popu-
lation size of 96 individuals for a single-objective genetic algorithms based instance
selection.

Fig. 11.2. Dependency of the number of fitness function evaluations on population size
(number of individuals), with 95 crossover points and 96 parents for a single-objective
genetic algorithms based instance selection. The crossover points are randomly se-
lected thus some of them can duplicate.
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11.2.2 Fitness Function

As the genetic optimization progresses, the variability among individuals is getting
smaller and thus in order to promote the best individuals the fitness function should
get steeper. On the other hand too steep fitness function at the beginning of optimiza-
tion can cause that only the best individuals will take part in generating the offspring
and thus the genetic diversity will shortly be very limited with possibly lacking the
good chromosome regions that were contained in the generally poor individuals. We
designed several different fitness functions, to find out how they perform for instance
selection tasks and to propose the optimal solutions depending on the optimization
progress [124].

Fig. 11.3. Dependency of the number of fitness function evaluations for 100 (red) and
1000 (blue) instances in the training set (on vertical axis) on the exponents (Eq. 11.1)
of the fitness function for different functions for a single-objective genetic algorithms.
The numbers (e.g. 2-4) show the number of equation with the function and with expo-
nent formulas: first number (2 in the example) shows the fitness function: 1=Eq.11.1,
2=Eq.11.2, 3=Eq.11.3, second number (4 in the example) shows the exponent func-
tion: 4=Eq.11.4, 5=Eq.11.5. 95 crossover points and 96 parents. (source: our work
[124])

In Eq. 11.1 the expression before raising to the power v is simply proportional to
the accuracy A obtained on the training set T and inversely proportional to retention
(percentage of selected instances) R in the selected training set S. The average ac-
curacy for the population avgA and average retention avgR only play the role of a
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normalizing factor. So this is the most intuitive approach. For regression problems the
accuracy in all the equations below can be replaced with the inverse of rmsetrn.

fitness =
(
α

A

avgA
+ (1− α)

avgR

R

)v
(11.1)

In Eq. 11.2 the expression in the brackets itself makes the fitness function steeper, as
now the individual with the minimal accuracy minA has zero fitness in the accuracy
part and the individual with the maximum retention maxR has zero fitness in the
vector part.

fitness =
(
α
A−minA
stdA

+ (1− α)
maxR−R

stdR

)v
(11.2)

Eq. 11.3 presents the strongest selection, as only the individuals with the quality
above the average will have non-zero fitness. Also other cut-off points, situated wher-
ever between zero and avgA (Eq. 11.3) can be used. However, we limited the experi-
ments to the three cases, because it seemed sufficient for drawing the conclusions.

fitness =
(
α ·max(0,

A− avgA
stdA

)

+(1− α) ·max(0,
avgR−R
stdR

)
)v (11.3)

The exponent v (Eq. 11.4 and 11.5) can be determined in various ways and we
used two approaches. In both approaches it consisted of the constant part v1 and the
variable part v2. In a particular case v1 or v2 can be set to zero in Eq. 11.4 and
11.5. The variable part in Eq. 11.4 increases linearly during the optimization, where i
denotes the current iteration:

v = v1 + v2
i

numIterations
(11.4)

In Eq. 11.5 the variable part depends on the speed at which the standard deviation
of the fitness expressed by Eq. 11.1 changes, where stdF (i) is the standard deviation
of the fitness from Eq. 11.1 in the current i-th iteration and stdF (i−1) and stdF (i−2)
in one and in two iterations ago. This ensures that the final fitness function steepness
grows as the standard deviation of the population from Eq. 11.1 decreases.

v = v1 + v2
0.66 · stdF (i− 1) + 0.33 · stdF (i− 2)

stdF (i)
(11.5)

Yet another option is to make v2 just inversely proportional to stdF (i).
In the experiments we evaluated 12 combinations (three formulas for the base, each

with two formulas for the exponent), each with various v1 and v2 values and each with
two α values (α = 0.96 and α = 0.90) for instance selection.
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The exponent v can also be variable and gradually increase as the optimization pro-
gresses. First, we can start from a low v, as v = 1 in order not to limit the population
diversity and then as the optimization progresses and the individuals tend to be more
similar to each other, we gradually increase v to some value, say v = 6. In fact this is
in many situations the most optimal solution for the reasons presented in Fig. 7.2 and
in chapter 7.

11.2.3 Shortening Chromosome

Reducing the chromosome length based on the majority voting at a certain point of
the optimization makes the evolutionary instance selection faster. It can be observed
that because of the decreasing diversity in the population during the optimization pro-
gresses, there are some instances (represented by corresponding positions in the chro-
mosome), which after some number of iterations are selected (1 in chromosome po-
sition) by almost every individual and which are rejected (0 in chromosome position)
by almost every individual. While the selection of other instances displays greater di-
versity among individuals. If the optimization continues, the instances (positions) that
take at this moment the same values in the great majority of individuals will finally
take the majority value with a very high probability, what was experimentally con-
firmed. Even if it introduces occasionally some local minimum, it is insignificant for
the purpose of instance selection, because the difference is only in a few instances
and those instances are replaced by others, usually with comparable predictive power.
Thus these positions can be at this moment assigned the majority values and removed
from the further optimization. That will leave us fewer parameters to optimize and
thus the further optimization will be faster. This is depicted in the example below:

ind1 0010101010101010010
ind2 0001101010101010110
ind3 0111011001111011110
ind4 0010101010101010010
ind5 1010101010101010010
ind6 0001111110011110000
ind7 0010101010101010010
ind8 0011011111101110110
vote 00????1?1???1?10??0

The number in the last row shows the majority position (in our case the position
represented in at least 7 out of the 8 individuals). If neither 0 nor 1 is present in at least
7 individuals at the same position, then this position is denoted by a question mark.
Thus only the question mark positions will be further optimized and the chromosome
can be shortened at this moment. This reduces the number of further iterations as
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well as the computational complexity of a single iteration (fewer parents and fewer
crossover points have to be generated to produce offspring).

Algorithm 11 The genetic instance selection
generate initial currentPopulation of P individuals
for n = 0 . . . numIterations do

apply multiparent multipoint crossover to generate the newPopulation of N
individuals (N <= P )
if diversity < Threshold and reducedSearchSpace = false then

Reduce the search space
reducedSearchSpace = true

end if
if the best solution is kown to be found then

STOP
end if
sort together currentPopulation and newPopulation individuals by fitness
select the best P individuals into currentPopulation
apply mutation

end for

Also the population size can be decreased, because the optimal population size
depends on the chromosome length. However, it grows much slower than the chro-
mosome length, so the factor alone does not reduce the computational cost a lot, but
all the three factors together do. There are two parameters, which we adjusted experi-
mentally: the iteration at which the reduction is performed and the voting threshold to
eliminate a given position. The pseudo-code of this method is shown in Algorithm 11.

In theory the chromosome length reduction could be performed several times dur-
ing the instance selection process. In practice it does not make much sense, as little
computational time will be gained from the subsequent shortenings and with each such
operation the risk that some possible good solutions are eliminated will accumulate.

11.3 Accelerating Calculations of Distance Matrix

The problem was presented in chapter 8, section 8.4 and in chapter 10. Here we will
assess the computational complexity of these solutions.

Calculating the distance matrix has a complexity O(n2) and then sorting it with
Quicksort O(nlonn). For bigger datasets (above about 25,000 instances in our imple-
mentation) it is becoming the dominating cost. There are ways to decrease the cost at
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the expense of some possible accuracy loss. Nevertheless, the accuracy is more limited
by the fact that rmse is evaluated on the training and not on the final test set.

However, as discussed in the previous sections, there is a way to accelerate the
first step, by using some of the approximate methods of finding the nearest neighbors.
We have chosen to use the K-means clustering with the standard Lloyd’s algorithm
[125], which has in practice linear complexity in the function of instance numbers.
Another solution could be to use the KD-tree space partitioning [126] or other similar
methods. As all the methods are approximate, there is some probability that not all the
nearest neighbors of each instance will be determined correctly. And to improve this
we proposed the extended clusters.

In this way we do not need the entire distance matrix, but only the distances to
several nearest neighbors to each instance. We use K-means clustering to cluster the
data into several clusters and then calculate the distances only withing the clusters,
thus reducing the computational cost almost as many times as the number of clusters,
as was discussed in section 10.2 and as is shown in Fig. 11.4. K-means clustering (see
Eq. 10.1) has in practice the complexity of about (C · N), where C is the number
of clusters. Then the complexity of calculating all the distance matrices only within
particular clusters isO(C ·(N/C)2) which isO(N2/C) (N is the number of instances,
C is the number of clusters). In case of using also the extended clusters (see section
10.2) the cost become about 3 times higher. However, because of unequal number
of instances in the clusters the complexity is in practice a little higher and using the
extended clusters it will grow approximately three times if there are on average two
extended clusters used.

Fig. 11.4. Reduction of operations to calculate distance matrix with data partitioning.
On left: calculating the whole distance matirx. On right: in orange - calculating dis-
tance only within the base clusters, in yellow - calculating the distances in the extended
clusters.

Other options are to use another method of accelerating k-NN calculations, as k-d
tree [126] or Locality-sensitive hashing (LSH) [127].
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11.4 Analysis of Computational Time and Complexity

In this case, contrary to the popular believe the evolutionary algorithm based solution
does not have to be more computationally expensive than the non-evolutionary ones.

The MEISR instance selection process can be decomposed into two steps:

1. The first step - calculating the distance matrices has the complexity O(n2).
2. The second step - running the evolutionary optimization has the complexity ap-

proximately O(nlogn) - because of number of epochs slowly grows with dataset
size.

Most of the non-evolutionary instance selection algorithms also must calculate the
distance matrix or another equivalent matrix. Their complexity is between O(n2)
(ENN, RHMC, ELH) and O(n3) (DROP1-5, GE, RNGE) [19]. We really observed
that for big datasets the instance selection time with DROP3 grows much faster than
with MEISR1 or MEISR2.

In the first step the distances between each pair of instances in the training set
are calculated in O(n2) and then they are sorted using the Quicksort algorithm in
O(nlogn), so the complexity of this step is O(n2). The time spent on calculating the
distance matrix also grows with the number of attributes. Therefore not all the points
in Fig. 11.5 are situated exactly on the trend lines and the points representing datasets
with more attributes are above the trend lines. However, using clustering, we reduce
the computational cost approximately as many times as the number of clusters and
thus the cost of this step becomes linear if the number of clusters is proportional to the
number of instances, for example if we add one cluster for each 500 instances.

Fig. 11.5. Left: MEISR (version 1 in grey, version 2 with data partitioning in green)
running time as a function of number of instances in the original training dataset.
Right: Percentage of MEISR running time used to calculate the distance matrix used
by k-NN. Light circles denote 1-NN as the inner evaluator and dark circles k-NN with
optimal k.



11.5 Conclusions 165

The second step consists of several operations. Calculating the fitness function has
the complexityO(n), because the output value of n instances must be obtained, where
n = N is the number of instances in the original training set. Obtaining the output
value requires reading k non-zero positions from sorted output value arrays, where k
is the number of nearest neighbors in the k-NN algorithm, what assuming reduction
rate of 50% requires reading 2k entries and calculating the average. The time spent
in this step grows with the number of k, but much slower than linearly, because also
other operations are performed in this step, which do not depend on k, or depend but
weaker than linearly, as crossover, mutation, selection. The proportions of time spent
at each of them depend on particular software implementation. The experimental mea-
surements confirmed that the complexity of the step can be considered approximately
O(nlogn). One operation in the second step takes longer than in the first step, but the
number of operations in the second step grows slower with dataset size.

Fig. 11.5 shows the dependency of the MEISR1 running time on the number of
instances (left) for 1-NN and k-NN with optimal k and the percentage of the running
time used to calculate the distance matrix. The lower lines show the approximate value
of MEIRS2 with dataset partitioning. Using also the extended clusters for higher pre-
diction accuracy, the time of calculating the distance matrix is about 3 times longer
(using on average two additional clusters, for which the distances to each point must
be calculated).

In a practical software implementation, there is also a third-factor consuming time:
the constant operations independent of the data size, as calling functions, creating
objects, etc. This factor is most significant with very small datasets and this is the
reason that the calculation time per one instance is higher for the smallest dataset than
for some of the middle size ones. All in all, the analysis of the computational time is
very complex and can be done only approximately.

11.5 Conclusions

The purpose of the presented optimization of the evolutionary instance selection pro-
cess was mostly to decrease the computational complexity, while also taking into ac-
count the stability (low variance) of the process. When we originally compared the
results obtained with evolutionary based instance selection methods with the results
of classical instance selection algorithms, wed obtained better outcome, but on the
other hand without the optimizations the calculation time was much longer.

The optimizations discussed in this and previous chapters allowed to shorten the
process time and make it comparable with the time of the classical methods. We
optimized the number of crossover points, the size of the population and the fitness
function. We added the caching of the information required by k-NN and some other
improvements.
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The first step - calculating the distance matrices has the complexity O(n2) and
sorting them with Quicksort O(n log(n)). With the dataset T size of N=1,000 in-
stances this took about 10% of the whole process and with N=40,000 about 65% with
21 attributes and for larger datasets it becomes the dominating cost. However, the
cost of this step can be reduced to linear complexity by using data partitioning. The
complexity of the second step - the evolutionary optimization can be assessed only
approximately as O(n log(n)), but in any case it is definitely less much than O(n2).

In the case of instance selection, contrary to the popular believe the evolutionary
based solution does not always have to be more computationally expensive then the
non-evolutionary ones. Most of the non-evolutionary instance selection algorithms
also calculate the distance or equivalent matrix and then perform some other opera-
tions with total complexity usually between O(n2) and O(n3).



Chapter 12
Joint Evolutionary Feature and Instance Selection

Abstract In this chapter we discussed joint evolutionary instance and feature selec-
tion. We present three basic approaches: using sequential feature and instance selec-
tion, dividing the chromosome into instance part and feature part and using coevolu-
tionary methods, where feature and instance population are evaluated separately, but
use the other population for calculating fitness value.

12.1 Introduction

Instance selection and feature selection have basically the same purpose: to reduce the
dataset size and possible to improve prediction quality of the models trained on the
reduced dataset. Traditionally different algorithms are used for instance and feature
selection due the different concept of instances and features.

Nevertheless, using evolutionary computations more options are at hand. One of
the options is to use a sequential approach, either as a traditional feature selection
(based on feature filters) followed by evolutionary instance selection or as evolution-
ary feature selection followed by evolutionary instance selection. Another possible
solution is to use part of the chromosome to encode instances and other part to encode
features and to perform single evolutionary optimization. Still another option is to ap-
ply coevolutionary approach with a separate population of features and instances and
periodically merge the best results. Each of these options has some advantages and
drawbacks, so in this chapter we will analyze all of the three approaches. Each of the
approaches can be implemented in many different ways and we will present some of
the implementations in order to give the reader sufficient knowledge to understand the
whole problem.
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12.2 Sequential Evolutionary Feature and Instance Selection

For instance selection pre-calculating and caching the sorted distances between par-
ticular instances is a very efficient method for accelerating the k-NN algorithm used
as an inner evaluator within the instance selection process (see chapter 8, section 8.4).
For feature selection the method is not fully applicable. Nevertheless, some speed up
can be achieved by pre-calculating the distances, but this is much less effective than
for instance selection.

To understand this problem, let us assume that there are five attributes (a, b, c, d, e)
and let us recall how the square of the distance between two examples dist(x1, x2) is
calculated in this case:

dist(x1, x2) = (x1a−x2a)2+(x1b−x2b)2+(x1c−x2c)2+(x1d−x2d)2+(x1e−x2e)2
(12.1)

We do not need to calculate the square root of dist(x1, x2), as we need only to
find out, which distances are smallest (which are the nearest neighbors) and not to
obtain their exact value. Now we can see that if one (or more) feature gets removed,
the distance must be re-calculated for each pair of instances. Let us write this equation
in a shorter form:

dist(x1, x2) = dista + distb + distc + distd + diste (12.2)

As we can see from Eq. 12.2 we can pre-calculate the squares of particular compo-
nents, although for a dataset with many features and many instances we can run out of
memory. A solution to fit the arrays into memory is the dataset partitioning discussed
in chapter 11. Let as assume, there are N=100,000 instances and F=1000 features.
To keep all the partial distances in memory we need to store about 0.5FN2 numbers,
that is 10e+12, what assuming the double type will give 3.64TB memory, what as of
2019 exceeds the capacity of most single computers and would require some advanced
server configurations. But when we use 100 clusters with an average size of 1000 in-
stances, that will sum up to 37GB RAM, what makes this possible to use a typical
computer to process this data. Moreover, the calculation time will be also shortened
100 times.

Another proposition of tackling this problem was presented in [29] and we present
this solution in section 12.3.

However, there are still some heuristics based on the experiments that can be used
to further limit the memory requirements. First, we sort the distance matrix with all
features and then we assume that if some features get removed - the order of the sorted
distance matrix will remain intact. So for example for 3-NN we update the distance
only for 20 nearest neighbors. So in fact we have to calculate the 20N distances and
not 0.5N2 distances and we already have the squares precalculated. That is a signif-
icant speed increase comparing to calculating everything from scratch each time, but
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definitely this is not so effective as in case of instance selection. Moreover, we never
have a guarantee that the closest neighbors will not move beyond the 20th instance.
But we can try to predict this and dynamically update the search distance basing on
the relations of the first 20 distances. If the minimum distances are at the beginning,
there is probably no need to exceed 20 positions in the search. However, if the mini-
mum distances are evenly split over the 20 positions, it is likely that the search space
has to be extended. This can be repeated iteratively as long as we clearly depart from
the minimum for the further elements of the original distance matrix.

That approach is getting a bit complex, but it saves as well memory as calculation
time. The downside of it is that it does not guarantee with 100% certainty that the
obtained order of instances will be correct in each case, but also genetic algorithms do
not guarantee that the optimal solution will be found. However, in both cases usually
the solution enough close to the optimal is found and it is enough to make us happy,
especially that the results are usually better than those obtained with non-evolutionary
approaches.

Fortunately, there are usually fewer features than instances, so the same fragments
are more likely to repeat in various chromosomes, especially at the final stage of the
optimization. Also other individuals will not differ too much, so the difference can be
added/subtracted to the sum to further accelerate the process.

As discussed in chapter 6, section 6.4 the first stage that should be performed in
data selection is noise removal and in typical data more there is a higher percentage
of noisy features than noisy instances. Thus in most cases feature selection should be
performed first. It can be done either using feature filters, wrappers os evolutionary
methods as mentioned in the previous section. The next state is to perform evolu-
tionary instance selection, which in this case is really independent from the feature
selection.

12.3 Features and Instances Encoded in the Same Chromosome

In this approach a part of the chromosome encodes instance and other part encodes
features. From the evolutionary algorithm view point the features and instances are
indistinguishable. That is the simplest case but not necessarily the best one.

The first problem with this approach is definition of the fitness function. Pérez-
Rodríguez and others [128] proposed the following fitness function

fitness = α1 · acc+ α2 · (1− f) + α3 · (1− n) (12.3)

where acc is the accuracy of the individual measured using a nearest neighbor rule,
f is the fraction of selected features, n is the fraction of selected instances and α1 +
α2 + α3 = 1.
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However, in our opinion a better fitness function is:

fitness = α · acc+ (1− α)
1

fy · nv
(12.4)

This function minimizes directly the dataset size, which is expressed by the product
f ·n, which usually corresponds to the computational cost of predictive model learning.
Typically the exponents y and v will be set to 1. However, if there is such a need, f
and n can be raised to different powers.

In [129] simultaneous instance and feature selection and weighting using evolution-
ary computation was discussed. For that purpose real numbers were evolved together
with binary values. The authors combined for that purpose differential evolution al-
gorithm and a CHC genetic algorithm. The weights were evolved using a differential
evolution algorithm and selection using the binary CHC algorithm. For N instances
and F features in the training set, the chromosome had the length of 2N+2F . For each
instance and feature, the weight was encoded in the chromosome and a binary value
denoting if it is selected. If any of the four tasks of feature selection, feature weighting,
instance selection and instance weighting was not performed, the corresponding part
of the chromosome was set to 1 in all positions representing this operation and fixed.
Recombination was performed with the standard differential evolution recombination
method combined with HUX crossover for the binary part of the chromosome.

In [130] the authors used binary value coding to select feature and instances. The
objective function was the composition of the precision of 1-NN plus a minimiza-
tion of the number of features and instances. They presented the results only on two
datasets: Satimage and an artificially generated dataset. The first part of the chromo-
some encoded features and the next part instances.

Chen [131] presented a multi-objective design to joint feature and instance selec-
tion called intelligent multi-objective evolutionary algorithm (IMOEA). The goal was
to maximize the accuracy of the 1-NN classifier and minimize both the number of fea-
tures and instances. Here also the first part of the chromosome encoded features and
the next part instances. However, they implemented "intelligent crossover" operator,
which uses only two parents, but tests several possible crossover points and chooses
the best one.

Ros et. al. [132] applied a multi-objective approach with a two-phase genetic algo-
rithm to select optimal features and instances. The search was optimized by dividing
the algorithm into self-controlled phases managed by a combination of pure genetic
process and dedicated local approaches. Different heuristics such as an adapted chro-
mosome structure and evolutionary memory were introduced to promote diversity and
elitism in the genetic population.

In [133] the authors used a genetic algorithm, which gave precedence to feature
selection over instance selection, by using a higher probability to the changes that
remove features from the solutions. The first part of the chromosome encodes the
F features and the next part the N instances. In the genetic algorithm the parents
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were selected randomly without considering their fitness. Next from the population
consisting of p parents and p children, p best individuals were selected. Moreover, they
use the "biased" mutation, that is a higher probability is assigned to the change from
1 to 0 than from 0 to 1 in the instance part of the chromosome to keep the number of
instances low. We used a similar approach in a multi-objective optimization to extend
the Pareto Front, as presented in chapter 10.

In [134] an approach was presented that splits chromosome in two parts, one for
features weights, which are encoded as real values in the range [0..1] and the other
one for instances, which are encoded as boolean values for binary instance selection.

12.4 Coevolutionary Feature and Instance Selection

In [135] and [136] cooperative coevolution was implemented as the co-existence of
some interacting populations, evolving simultaneously was presented. Three popu-
lations were cooperating to get the best possible solution and each of them was fo-
cused on one data reduction task. The first population performs instance selection, the
second - feature selection, the third population performed both instance and feature
selection. A candidate solution was created by joining individuals chosen from each
population. To evaluate each individual a selected individuals from the other popula-
tions (so called collaborators) were used and then the collaborators were merged - as
in a standard coevolutionary approach.

In [137] the authors applied the Estimation of Distribution Algorithm (EDA),
which is a modification of a genetic algorithm, to select instances and features in
the problem of estimating the likelihood of one medical dataset. In EDAs, there are
neither crossover nor mutation operators, the new population is sampled from a prob-
ability distribution which is estimated from the selected individuals. A randomized,
evolutionary, population-based search is performed using probabilistic information to
guide the search. In this way, both approaches (genetic algorithms and EDAS) per-
form the same operations, except that EDAs replace genetic crossover and mutation
operators by a probabilistic model of selected promising solutions and generating new
solutions according to that model.

In [29] a scalable evolutionary simultaneous instance and feature selection algo-
rithm was presented. Is was based on the divide-and-conquer principle and on book-
keeping, which allowed the execution of the algorithm be almost linear in time. The
divide-and-conquer approach of applying the selection process to subsets of the whole
dataset was used for instance selection in some literature positions and in this work
was extended to simultaneous instance and feature selection. Thus random partitions
of the instances and features were created and the selection was performed within
each of the subsets. To avoid a substantial randomness and its negative effects, this
partitioning was repeated for several times and the results were combined by a voting



172 12 Joint Evolutionary Feature and Instance Selection

process. Ensembles obviously stabilize the results, as was already discussed in the first
part of the book.

In [138] the authors used two simultaneous Simulated Annealing runs to solve each
problem separately but use the actual solution of each process to calculate the quality
of both of them. That is to a certain degree similar to the idea of coevolution.

In [76] a hybrid evolutionary algorithm for data reduction, using both instance and
feature selection, was presented. A global process of instance selection, carried out by
a steady-state genetic algorithm, was combined with a fuzzy rough set based feature
selection process, which searches for the most interesting features to enhance both the
evolutionary search process and the final preprocessed data set.

Also some other complex hybrid methods were presented in literature ([139, 140,
141]).

12.5 Conclusions

An approach to simultaneous evolutionary feature and instance selection proposed by
most authors was based either on splitting the chromosome into feature part and in-
stance part or on different versions of coevolutionary methods. Coevolutionary meth-
ods have this advantage over dividing the chromosome into feature and instance part
that the chromosomes are shorter and thus the optimization is faster. Nevertheless, the
computational cost of such solutions still remains high if there are many features, as
accelerating the calculation in case of feature selection cannot be done so effectively as
can be done for instance selection by calculating an sorting the distance matrices only
once before the optimization. For that reason for very large dataset hybrid solutions
based on feature filters with evolutionary instance selection can also be considered, if
time limit is the concern.



Chapter 13
Instance Selection for Multi-Output Data

Abstract In this chapter we present instance selection for multi-output data using
multi-objective evolutionary algorithms. A multi-target regressor based on k-NN is
used as an inner evaluator to assess the error inside the instance selection process,
while the final prediction is performed using different multi-target predictive models.
In this chapter we incorporate all the solutions described so far, as multiple Pareto
fronts, dataset partitioning, proper population initialization and others. The results are
presented on the benchmark datasets and they are very promising, showing that the
proposed method greatly reduced dataset size and, at the same time, improved the
predictive capabilities of the multi-output regressors.

13.1 Introduction

Thus, in this chapter we will focus on instance selection in multi-target regression
problems. There are a lot of papers on instance selection for single-label classification
and also some, but definitely much fewer for single-label regression. However, there
were only a few papers on instance selection for multi-label classification. We have
written a paper on this topic [142], which to the best of our knowledge this is the
first paper on instance selection for multi-output regression. The experimental results
presented in this chapter are based on this paper.

Multi-output classification, also known as multivariate or multi-target classifica-
tion, is a task of predicting of multiple classes by using a set of input variables. In
other words: the inputs are similar as in a single output classification problem, but the
output is different, as it consists of many single outputs.

By analogy, multi-output regression, also known as multivariate or multi-target re-
gression, is a task of predicting of multiple continuous values by using a set of input
features [143, 144].

173
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The simplest way to predict each of the outputs of the multi-output problem is
to independently train a different model for each of the outputs. This approach is
called a single-target method. However, the drawback of this method is that this
does not use the relationships between the different outputs, which can improve
the prediction quality and thus methods, which use these relationships have proven
to give better results [145, 146]. There are two groups of approaches to multi-
output data: data transformation and algorithm adaptation [145, 147]. The data trans-
formation methods rely on transforming the multi-output label dataset into a set
of single-target datasets, which are then used for training a model for each tar-
get. The prediction is made by concatenating the different predictions of each re-
gressor. In this chapter, we use four data-transformation methods implemented in
the Mulan package [148] - the most popular package for the multi-target problems
(http://mulan.sourceforge.net/datasets-mtr.html):

• Single-target regressor - the equivalent of the binary relevance method [149] for
classification. It creates as many single-output datasets as the number of outputs in
the original multi-output dataset - one dataset for each output. The regressor is then
trained on each of these sets to predict one output.

• Multi-target stacking - adapts the stacked generalization [150] to multi-target data.
It consists of two stages. In the first stage, an independent model is trained for each
output. In the second stage the same number of models are used as in the first stage,
but the predictions of the first stage models are added to the original attributes.

• Regressor chain [151] - several regressors are chained in sequence, the first one is
trained on the inputs only and predicts the first output. The second one is trained on
the inputs and the output from the first one. The third one is trained on the inputs
and the output from the first and the second one and so on. The drawback of this
method is that it depends on the order in which particular regressors are added to
the chain. In general they should be added from the best performing to the worst
performing one.

• Ensemble of regressor chains - the ensemble combines several regressor chains
with different chaining orders into an ensemble. This method has similar advan-
tages as single-output ensembles: minimizing the influence of the regressor order
in the chain and improving prediction quality.

Instance selection for multi-output regression is not an easy task, as it comprises
two problems: instance selection for regression [34] and multi-target data. Both of
the issues are not simple and their combination is especially challenging. Even using
instance selection for multi-label classification datasets [152] was not an easy task.
This is one of the reasons for which we decided to use the evolutionary approach, as
we do not have to explicitly define the rule for particular instance removal.

http://mulan.sourceforge.net/datasets-mtr.html
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13.2 Multi-Objective Evolutionary Instance Selection for
Multi-output Regression

We adapted the MEISR2 method for multi-target data. In the adaptation process we
needed to change two elements: the inner evaluation model inside the instance selec-
tion and the final predictor. As the final predictors we use the four models explained
in the previous section implemented in Mulan, this is:

1. single-target regressors based on k-NN
2. multi-target stacking
3. regressor chain of k-NN
4. ensemble of k-NN regressor chains

We have implemented in our software used for instance selection two of these
models as the inner evaluators: single target regressor and regressor chain. As it can
be expected from the experience with instance selection for single target data, the best
results can be obtained if the evaluation model inside the instance selection process is
the same model as the final regressor.

However, for the sake of speed of the solution we implemented only single target
regressor and regressor chain. But the selected sets obtained with the two models were
in most cases almost the same. That was caused by the "discrete" properties of the
k-NN algorithm. In a regressor chain the output of the previous predictor is added as
an additional input of the next predictor. But in order to change the results comparing
to single target regressor, at least one of the nearest neighbors in k-NN has to change.
However, the change occurred at a very low frequency, so even though it sometimes
changed the predicted output for a given target, this very seldom resulted in a different
decision about the instance selection or rejection.

The conclusion from this is that in order to achieve the improvement from regressor
chain, three conditions should be satisfied:

1. The targets should be sorted in increasing order of the rmse of a single target
predictor.

2. The prediction model should not be k-NN, but a "continuous" model, which will
always change its output if one additional input is added (as linear regression for
instance).

3. The task should be rather regression or instance weighting than classification or
binary instance selection, as in regression the change is directly applied and in clas-
sification or binary instance selection the decision about a given instance changes
only if the change from the previous point is big enough to exceed the threshold.

Using any other base models than k-NN, would be very time consuming, as it was
already discussed. We finally decided to use only single-target regressors and regressor
chains based on k-NN as the inner evaluator.
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The process was performed using the NSGA-II as the search engine in a way as
described in chapter 9 with generation of the additional Pareto fronts as needed and
the dataset partitioning if the number of instances is greater than 1500, as described in
chapter 10.

13.3 Experimental Evaluation

The performance of the presented instance selection for multi-output data was experi-
mentally evaluated in 10-fold cross-validation using multi-output regressors and com-
pared the results with the prediction obtained by the multi-target regressors trained on
the original, uncompressed datasets [142].

The experiments were carried out on the 13 multi-output regression datasets (see
Table 13.1) that are the benchmark files available from the Mulan project website.
There were 14 benchmark datasets available at the Mulan website. The biggest one
River flow 2 had the same number of instances as River flow 1, but 8 times more
attributes. Although our software was able to perform the instance selection on that
dataset, the Mulan package that we used for the final predictions, went out of memory
with the 64 GB RAM that we had in our computer. So only the results for the 13
datasets are reported.

Table 13.1. Summary of datasets characteristics: name, domain, number of instances,
features, and outputs.

Dataset Domain Instances Attributes Outputs
Andromeda Water 49 30 6
Slump Concrete 103 7 3
EDM Machining 154 16 2
ATP7D Forecast 296 211 6
Solar flare 1 Forecast 323 10* 3
ATP1D Forecast 337 411 6
Jura Geology 359 15 3
Online sales Forecast 639 401 12
ENB Buildings 768 8 2
Water quality Biology 1060 14 16
Solar flare 2 Forecast 1066 10 3
SCPF Forecast 1137 23 3
River flow 1 Forecast 9125 64 8
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13.3.1 Experimental Setup

The experimental setup is presented in Fig. 13.1 and 13.2. As there were some missing
data and nominal attributes in the original datasets, two additional preprocessing steps
were performed: missing data imputation by replacing missing values by the mean
value of the feature, and nominal attributes replacement by transformation into binary
attributes with the methods implemented in the Weka package.

The NSGA-II genetic algorithm used the following parameters: 25-35 epochs for
each dataset (more for larger datasets), 96 individuals in the population, and the cross-
over, selection and mutation operations performed as described in the previous chap-
ters. Also the distance matrix was prepared in a similar ways, as in the case of multi-
objective instance selection for single output regression, however with the difference
that the values for all outputs were stored.

Only the first Pareto front was needed in over half of the experiments, as the lowest
rmse obtained in the first front on the training set was already below 95% of the
baseline and the additional sub-fronts permitted no further lowering of the rmse and
therefore were not included in the final front.

In the testing part, the base regressor was k-NN with k = 1, 3 and 5, adapted to
multi-output regression by four different techniques [153]: single-target regressor,
multi-target stacking, regressor chain, and ensemble of regressor chains. All of the
parameters of the regressors were set to the default values in Mulan. The average root
mean squared error (rmse) in the multi-output version was used as a measure of the
prediction quality:

rmse =
1

t

t∑
j=1

√∑Ntst

i=1 (yij − ŷij)2

Ntst
(13.1)

where,Ntst is the number of instances in the test set, t the number of targets (outputs),
yi and ŷi are respectively the actual and predicted outputs for the instance xi.

We report the results for three characteristic points:

• (c(rmin), rmin): The first point of the Pareto front, i.e., the solution with the lowest
compression and with the lowest rmse on the training set. Although it cannot be
guaranteed that the model trained on this subset will produce the lowest rmse on
the training set in every case, it will usually do so.

• c(rbase): The point of the Pareto front when the front intersects the baseline on the
test set (we understand by the baseline the rmse obtained on the test set with the
regressor trained on the whole training set).

• (c(r105), r105): The point of the Pareto front that achieves an rmse on the test set
5% higher than the first solution (c(rmin), rmin).
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Fig. 13.1. The experimental process without data partitioning.

Fig. 13.2. The experimental process with data partitioning. The "Training" (single
partition) block is shown in Fig. 13.1.



13.3 Experimental Evaluation 179

13.3.2 Experimental Results

All the reported results are the averages in 10-fold cross-validation. Tables 13.2, 13.3,
and 13.4 show the rmse obtained with the k-NN regressor-based single target, multi-
target stacking, chain of k-NN, and an ensemble of k-NN chains: rmin - the minimal
rmse obtained with instance selection, r0 - rmsewithout instance selection (the mod-
els were trained on the whole original dataset).

Table 13.5 shows the compression (in percentage) achieved by the instance selec-
tion methods with k=1, 3 and 5, at the minimum rmse obtained with instance selection
(rmin), at the baseline rmse (r0) and at r105 (rmse 5% over the rmin).

The solutions obtained on the test sets also frequently form a Pareto front corre-
sponding to the Pareto front on the training sets. The ensemble of regressor chains
displays relatively low dependence on instance selection. That is, it is difficult to im-
prove the rmse with instance selection, but on the other hand quite a strong instance
selection is possible without degrading its performance. The biggest improvements
in rmse were observed for the models, which used 1-NN. That can be explained in
the same way as it was explained for a single output data, that removing the nearest
neighbor in that case change the results very strongly.

Table 13.2. Summary of the results for rmse obtained with multi-output k-NN regres-
sors with k=1 (lower is better).

s.targ. stacking chain ensemble
Dataset r0 rmin r0 rmin r0 rmin r0 rmin
Andromeda 0.447 0.441 0.447 0.441 0.447 0.441 0.411 0.491
SCPF 0.958 0.763 0.958 0.763 0.958 0.763 0.826 0.745
Water quality 0.942 0.894 0.942 0.894 0.942 0.894 0.828 0.798
Solar flare 1 1.225 0.898 1.231 0.898 1.252 0.897 1.108 0.892
Solar flare 2 0.935 0.839 0.950 0.838 0.979 0.838 0.923 0.816
Slump 0.908 0.803 0.908 0.803 0.908 0.803 0.751 0.786
ATP1D 0.553 0.515 0.553 0.515 0.553 0.515 0.477 0.555
ATP7D 0.782 0.734 0.782 0.734 0.782 0.734 0.681 0.670
EDM 0.603 0.525 0.603 0.525 0.603 0.525 0.580 0.522
River flow 1 0.090 0.066 0.090 0.066 0.090 0.066 0.083 0.065
ENB 0.573 0.525 0.573 0.525 0.573 0.525 0.462 0.417
Jura 0.813 0.805 0.813 0.805 0.813 0.805 0.730 0.743
Online sales 0.900 0.858 0.900 0.858 0.900 0.858 0.790 0.778
Average 0.748 0.667 0.750 0.667 0.754 0.666 0.665 0.637
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Table 13.3. Summary of the results for rmse obtained with multi-output k-NN regres-
sors with k=3 (lower is better).

s.targ. stacking chain ensemble
Dataset r0 rmin r0 rmin r0 rmin r0 rmin
Andromeda 0.587 0.506 0.564 0.466 0.570 0.497 0.599 0.528
SCPF 0.843 0.736 0.857 0.735 0.833 0.735 0.776 0.737
Water quality 0.788 0.780 0.787 0.785 0.789 0.787 0.765 0.765
Solar flare 1 1.027 0.909 1.060 0.908 1.018 0.910 1.012 0.892
Solar flare 2 0.907 0.859 0.905 0.868 0.887 0.859 0.914 0.851
Slump 0.700 0.739 0.686 0.770 0.720 0.750 0.716 0.724
ATP1D 0.438 0.457 0.439 0.458 0.437 0.457 0.431 0.444
ATP7D 0.626 0.636 0.626 0.636 0.624 0.634 0.608 0.606
EDM 0.586 0.583 0.571 0.580 0.574 0.583 0.627 0.616
River flow 1 0.092 0.071 0.093 0.072 0.093 0.071 0.075 0.074
ENB 0.296 0.304 0.276 0.296 0.291 0.308 0.343 0.325
Jura 0.722 0.727 0.735 0.738 0.729 0.723 0.724 0.727
Online sales 0.800 0.819 0.798 0.824 0.794 0.815 0.778 0.782
Average 0.647 0.625 0.646 0.626 0.643 0.625 0.644 0.621

Table 13.4. Summary of the results for rmse obtained with multi-output k-NN regres-
sors with k=5 (lower is better).

s.targ. stacking chain ensemble
Dataset r0 rmin r0 rmin r0 rmin r0 rmin
Andromeda 0.587 0.601 0.564 0.580 0.570 0.610 0.599 0.621
SCPF 0.785 0.731 0.789 0.740 0.759 0.728 0.737 0.730
Water quality 0.770 0.772 0.773 0.777 0.776 0.780 0.762 0.766
Solar flare 1 0.953 0.904 0.989 0.906 0.956 0.906 0.948 0.908
Solar flare 2 0.886 0.842 0.905 0.861 0.889 0.845 0.894 0.845
Slump 0.712 0.709 0.715 0.718 0.727 0.721 0.706 0.705
ATP1D 0.443 0.441 0.442 0.443 0.442 0.441 0.432 0.438
ATP7D 0.610 0.638 0.610 0.637 0.609 0.639 0.599 0.643
EDM 0.581 0.570 0.584 0.570 0.584 0.570 0.634 0.675
River flow 1 0.087 0.075 0.081 0.076 0.087 0.075 0.079 0.079
ENB 0.312 0.303 0.311 0.299 0.309 0.305 0.318 0.312
Jura 0.722 0.725 0.735 0.736 0.729 0.730 0.724 0.734
Online sales 0.811 0.801 0.805 0.801 0.806 0.800 0.781 0.791
Average 0.635 0.624 0.639 0.626 0.634 0.627 0.632 0.634
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Table 13.5. Summary of the compression results (in percentage) of the instance selec-
tion method.

k=1 k=3 k=5
Dataset rmin rbase r105 rmin rbase r105 rmin rbase r105
Andromeda 45.12 45.12 49.29 22.68 30.55 40.74 17.14 17.14 17.80
SCPF 67.99 82.39 82.39 67.16 83.18 86.35 67.62 75.20 94.14
Water quality 51.32 80.86 80.86 62.41 66.21 80.31 9.84 9.84 81.08
Solar flare 1 69.39 89.82 95.51 82.64 89.65 89.65 67.67 83.02 89.48
Solar flare 2 69.55 82.46 82.97 66.47 78.85 78.85 72.49 82.85 82.85
Slump 56.73 78.85 80.05 54.14 54.14 56.31 19.61 19.61 63.73
ATP1D 49.29 52.30 59.94 49.31 49.31 60.15 10.68 10.68 57.91
ATP7D 60.68 77.78 79.67 6.18 6.18 59.62 54.95 54.95 56.24
EDM 41.69 64.92 67.76 31.96 31.96 52.29 40.46 40.46 46.62
River flow 1 64.05 79.32 79.32 67.92 73.88 73.88 66.89 73.78 76.16
ENB 19.43 80.86 80.86 13.55 13.55 14.02 58.31 67.75 80.91
Jura 5.18 5.18 62.39 10.09 10.09 57.02 1.37 1.37 48.29
Online sales 9.93 44.71 51.29 5.52 5.52 62.17 10.33 10.33 70.36
Average 46.95 66.51 73.25 41.54 45.62 62.41 38.26 42.08 66.58

13.4 Other Solutions from Literature

We were able to find in literature only three instance selection algorithms for multi-
label classification tasks:

• Kanj et al. [154] proposed a instance selection method, also based on the ENN
algorithms, that aims to reduce noise in the dataset by removing outliers.

• Arnaiz-González et al. [155] recently proposed a method of adapting the local set
concept, successfully used on single-label instance selection methods [22, 156], to
multi-label datasets. It was used for adapting two single-label instance selection
methods, LSSm and LSBo, to multi-label learning.

• Charte et al. [152] proposed a heuristic undersampling method for imbalanced
multi-label datasets based on the canonical ENN method [12].

13.5 Conclusions

An instance selection method for multi-output regression problems has been proposed.
In our opinion the results are excellent. The experimental validation of the method has
shown that despite the large reduction of dataset size, in some cases by more than 50%,
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the selected instances can be used to train a multi-output regressor, the performance
of which is not worse and can even be better than having trained the regressor on the
whole dataset.

The best results in terms of rmse reduction were observed for the single regressor,
which is obvious, as this method was internally used within the instance selection pro-
cess. Also the best improvement was observed for 1-NN, as 1-NN is highly sensitive
to noise and outliers, as it was already discussed in previous chapters.

A method of over-fitting prevention is also important and for that purpose we used
a limited number of epochs with the possibility of generating up to three Pareto fronts
that were then merged into one final front. Although the proposed method is based on
the use of genetic algorithms, it is quite fast, because it uses all the mechanisms to
increase the speed, which were presented in the previous chapters.
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Chapter 14
Introduction to Neural Networks

Abstract In this chapter we outline how the neural network learns the data properties
to be able to predict unknown similar data in classification and regression tasks. The
kind of neural networks we will use in this part of the book will be Multilayer Percep-
tron and its modifications and extensions. We present the network structure and two
learning algorithms: Rprop and VSS.

14.1 Introduction

Artificial neural networks are one of the most popular models applied to predictive
analysis and have been used to a wide variety of tasks ([157, 158, 159, 160, 161]).
Especially multilayer perceptrons (MLP) have been successively used in various ap-
plications, such as function approximation, classification, pattern recognition or signal
and image processing. MLPs do not require any prior knowledge about input-output
dependencies and are able to learn and build the data models based on training exam-
ples. For that reason they are popular and often considered easy-to-use tools, as there
are many packages that implement neural networks.

Since the first successful neural network learning algorithm, called backprop-
agation, was developed [162, 163] the field of neural networks has been rapidly
developing and a lot of neural network learning algorithms have been proposed in the
literature. While working on instance selection with neural networks, we used mostly
Rprop [166] and VSS [167] and we developed some extensions of these methods. As
well Rprop as VSS make use of error surface properties.

In recent years the so called deep neural networks (networks with many hidden
layers) are the most successful models in image recognition. In this work we will
focus on neural networks used for classification and regression problems with the
special emphasis on feature and instance selection and logical rule extraction.
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The basic element of the neural network is a neuron. A neuron consists of two parts:
the net function and the activation function. The activation function is also known as
a transfer function. The net function determines how the input signals are combined
inside the neuron The most commonly used net function and the only one considered
in this work is given by the following formula:

u =

n∑
i=1

wixi (14.1)

The parameters w− are called weights. The weight w0 is called bias or threshold
and its corresponding input signal x0 always equals 1 and does not form a connec-
tion between two neurons as other weights do. The output of a neuron denoted by y
is related to the output of the net function u by a transformation called activation (or
transfer) function. Virtually any continuous non-linear and monotone function can be
used as neural transfer function [164]. Moreover, if analytical gradient-based methods
are used for network training, the functions must be differentiable. The most com-
monly used transfer functions for multilayer perceptron are hyperbolic tangent (Eq.
14.2-left) and logistic sigmoid (Eq. 14.2-right), where β is a coefficient determining
the sigmoid slope.

y =
1− e−βu

1 + e−βu
y =

1

1 + e−βu
(14.2)

Fig. 14.1. Neural transfer functions: hiperbolic tangent (left) and logistic sigmoid
(right).



14.2 Multilayer Perceptron (MLP) 187

14.2 Multilayer Perceptron (MLP)

In case of classification a single layer perceptron is able to classify only linearly sepa-
rable data. For example, it is not able to solve the xor problem. Similarly in regression
tasks it can reflect only very simple function approximations (linearly assuming linear
transfer function).

A multilayer perceptron (MLP) is a neural network that contains the input and
output layer of neurons and several (usually one or two) layers of neurons between
input and output, so called hidden layers. However, for some special tasks, as image
recognition also networks with more hidden layer are used. Moreover, there exist an
optimal number of layers allowing for the best results in terms of prediction accuracy,
which depends on the task the network performs. As a rule, the more complex task the
higher number of layers or more hidden neurons provide the best prediction results.

The input layer is counted by some authors as a separate network layer and we will
follow this convention. Thus in this work a three-layer network refers to a network of
two layers of neurons with adaptable weights and one additional input layer of neurons
that only distribute the input signals, as shown in the next figure. Some extensions of
this architecture will be discussed in chapter 18.

In general the MLP networks used for classification and regression differ only by
the output layer, which in case of classification consists of as many neurons with
hyperbolic tangent or logistic sigmoid transfer function as the number of classes and
for regression of only a single neuron with linear transfer function (although some
exceptions are possible).

Fig. 14.2. Neuron model. Fig. 14.3. MLP neural network.
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14.3 Error Surface

To understand the learning process and the functioning of the network better, we can
visualize the error function, which will be a hyper-surface in the weight space and
for that reason it is called error surface [165]. As there are plenty of weights in the
network and we can effectively see only in 3-dimensions, it is a good idea to choose
two most characteristic directions c1 and c2 in the weight space and the vertical axis
will present the error value in this space point, as in Fig. ??.

A known method for finding the most characteristic directions, which contain
the most variability and thus best shows the data properties is principal component
analysis (PCA). We can obtain all network weights from each iteration of the learning
algorithm and build a weight matrix. Then we perform PCA on that matrix to trans-
form the original direction to the PCA component direction. It turns out that the first
PCA direction usually explains about 80% of the total variability (the first eigenvalue
is about 80% of all the values) and the second PCA component above 10%. Thus vi-
sualizing the error surface in the first and second PCA direction gives us a very good
insight into the error surface properties.

As can be expected the shape of the error surface depends on two factors: the net-
work architecture and the dataset properties. In the next figure we present typical error
surfaces of MLP networks visualized in two PCA directions.

Fig. 14.4. Error Surface for Iris
dataset. Horizontal axes: first (c1) and
second (c2) PCA component.

Fig. 14.5. Error Surface for Xor
dataset. (source: our work [165])

From the PCA-based visualizations of the learning trajectories, we can observe that
the change of each weight in current epoch is likely to be similar to the change in the
previous epoch.
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14.4 Neural Network Learning Algorithms

An MLP network performs a mapping from the input (feature) space to the output
space. The aim of the network training is to obtain such weights (and such network
structure if it is also modified by the training algorithm) that the mapping reflects the
structure of the data and maximizes the classification accuracy or minimizes rmse (or
other error measure) as well for the training dataset as for the test dataset.

The network error, determined by the difference between the expected and actual
network outputs, is a function of many parameters, such as the training dataset, net-
work connection structure and weight values. In most cases the training data and net-
work structure are not modified during the training, so the weight values are the only
adjustable parameters. The network error function can be imagined as a multidimen-
sional surface, with each weight defining one dimension. Thus, the training algorithms
search for a minimum on the error surface.

The training set is given to the network inputs vector by vector, the network error
is calculated based on the difference between expected and actual output(s) of the
network and the weights are adjusted in order to minimize the error. The process is
then repeated iteratively.

MLP training algorithms can be divided into several categories, such as analyti-
cal gradient-based, global optimization or search-based methods. Analytical-gradient
based algorithms calculate the derivative of error function with respects to every
weight and then change the weights in order to minimize the network error (by moving
downwards on the error surface). Global optimization algorithms do not change the
weights basing on the gradient direction but search for the minimum in much broader
areas.

The training data frequently contains some noise and the noise should not be re-
flected in the mapping. If a network generalizes well then it achieves similar classifi-
cation accuracy or rmse in case of regression on a training set and on a test set. A test
set contains vectors, which belong to the same data distribution, but which have never
been used in the training process.

The neural network learning algorithms which at the same time can be used to
train the network and to remove noise and redundant instances will be presented in
the following chapters. However, as they are based on the general purpose algorithms,
first we shortly present two of them: Rprop, which is based on backpropagation and
the VSS algorithm developed by us.

14.4.1 Backpropagation and Rprop

The gradient-based MLP learning algorithms consist of two iteratively performed
phases. In the first phase error gradients in each weight direction are calculated. In
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the second phase the weights are updated taking into account the results of the first
phase. Thus for several first-order (which means they calculate only the first deriva-
tives) algorithms, as backpropagation, Rprop and Quickprop, the first phase is the
same and only the second phase is different.

The sum-squared error function, which is minimized by backpropagation algo-
rithm, can be written in the following way:

E =
1

2

∑
v

∑
j

(desired(v, j)− out(v, j))2 (14.3)

where desired(v, j) is the desired signal and out(v, j) is the actual signal of the j-th
output neuron. The error is summed over all output neurons j and all vectors in the
dataset v. The network weights are adjusted by a series of gradient descent updates.
For sigmoid transfer function after some calculations that can be found literature, the
equations that constitute the basic BP algorithm are obtained in the form presented
below. We define

delta(k, n) = (desired(k, n)− out(n))out(n, k)(1− out(n, k)) (14.4)

as the delta for the output layer, where n is the index of the layer. Then we back-
propagate the deltas to earlier layers using

delta(k, n) = (
∑
k

delta(n+ 1, k)w(l, k, n+ 1))out(n, k)(1− out(n, k)) (14.5)

where w(l, k, n + 1) is the weight connecting the k-th neuron in the n-th layer with
the l-th neuron in the n+1 layer. Then each weight update equation can be written as

w(k, l, n) = η(
∑
v

delta(n− 1, j)out(n− 1, j) (14.6)

To enhance the BP algorithm, variable learning rate and momentum (that is adding
previous step to the current step with a certain weight to minimize the algorithm os-
cillation) can be used.

In Rprop, the second step in each weight direction does not depend on the gradient
value but only on its direction. If the gradient in two successive epochs has the same
direction (sign) the step in a given weight direction is increased (typically by 20%),
other wise the direction of the step is changed and its value is decreased (typically by
50%). The assumption behind Rprop that each weight tends to change in similar way
in two consecutive epochs proved to be more realistic than the assumption of back-
propagation that each weight should be changed proportionally to its gradient compo-
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nent. As a results Rprop in prevailing majority of cases outperform backpropagation.
In our works we used mostly Rprop and the VSS algorithms.

14.4.2 Variable Step Search Algorithm (VSS)

We presented the final version of VSS (Variable Search Step Algorithm) in [168] and
some improvements in [169]. VSS dynamically adjusts independently each weight
during a rough minimization in each weight direction. VSS was designed taking the
advantage of MLP error surface properties that its steepness in different directions
varies ranks of orders, and the ravines in which the MLP learning trajectories lay are
usually curves, slowly changing their directions [165, 168]. Basing on the properties
we can expect that an optimal dw for the same weight in two successive training
cycles will not differ much while dw for different weights in the same training cycle
may differ ranks of order.

VSS changes a single network weight w by dw and checks if it caused the error to
decrease. If yes, the change is kept and dw for this weight is increased, typically by
30-50%. If not then dw = −0.5dw and the error surface is examined in the second
point, from the other side of the current value of w, if the error decreases this weight
value is kept, otherwise the weight w is not change in this iteration.

That gives VSS the advantage that it can better explore the error surface and thus
requires much fewer iterations to train the network than Rprop, which changes all
weights at once. Another advantage of VSS is that it can be used with any transfer
functions, also noncontinuous and not differentiable and with any error function. To
calculate the error in VSS we need to propagate the signals each time only via a small
fragment of the network that is affected by the weight change, what makes the com-
putational cost of one VSS iteration only a bit higher to that of one Rprop iteration.

Since only one weight is changed at a time, the signals do not have to be propagated
through the entire network to calculate the error, but only through the fragment of the
network in which the signals were different before and after the change. The remain-
ing signals incoming to all neurons of hidden and output layers are remembered for
each training vector in an array called "signal table". With VSS the signals must be
propagated through the entire network only once at the beginning of the training thus
filling the signal table. The dimension of the signal table isNV (NH +NO) whereNV
is the number of vectors in the training set and NH and NO the number of hidden and
output neurons. NH denotes the sum of the neurons from all the hidden layers. After
a single weight is changed, only the appropriate entries in signal table are updated.
Also the error of each output neuron is stored in the error table and does not have to
be calculated again if a weight of another output neuron is changed. The signal table
reduces two types of calculations: summing the signals incoming to the neuron (since
the sum of incoming signal is stored, it is enough to subtract the single old value of
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one signal and add the new value), calculating the transfer function values. The er-
ror table reduces calculating the network error. It significantly shortens training times,
especially for bigger networks. For a network structure 125-8-2 the tables reduce the
training cost about 35 times, and for bigger networks even more, as shown in Fig.
14.6.

Fig. 14.6. Signals calculated after a single weight modification using signal table. In
blue: when the output neuron weight is modified. In red: when the hidden neuron
weight is modified.

In Fig. 14.6 signals that change if an output neuron weight is changed are shown
in blue. Signals that change if a hidden neuron weight is changed are shown in red.
The remaining signals are stored in the signal table and error table and thus there is no
need to re-calculate them.

Another interesting option that can be quickly used for feature selection is initial-
izing all hidden layer weights with zero values and setting the first guess dw of each
weight change to a large value in the first training cycle. The larger dw causes that
more features are eliminated from further training, because the results are better with
the weight being zero than some big value. After the first training cycle all hidden
weights that still equal zero are pruned and dw is again set to a smaller value. This is
not the most accurate solution, but it is very fast.



Chapter 15
Noise Reduction in Neural Network Learning

Abstract In this chapter we discuss the methods of noise-resistant training of the MLP
neural networks. Two groups of approaches are compared here - these based on noise
removal by instance selection before network training and these based on modified
robust error functions, which allow the network itself reduce the noise. The idea of
the robust error functions is to limit the outlier influence on the network training by
limiting network response to such instances.

15.1 Introduction

Instead of performing instance selection before the predictive model training, we can
try to incorporate the instance selection into the model learning. One advantage of
this approach is solving the problem of different decision borders of k-NN or similar
algorithms (which are usually used inside instance selection) and the predictive model.
Another advantage is the possibility of assessing during the model training how the
selection influences the results and adjust the selection accordingly.

The drawback of this approach may be in some cases higher computational cost of
the classification process than the joint cost of the prior instance selection followed by
learning the classifier on the reduced set. This is especially evident for large datasets,
where k-NN can be efficiently accelerated by methods like clustering and then per-
forming the search for the nearest neighbors only within one cluster, KD-Tree [126]
or Local Sensitive Hashing [127].

Yet another option is to join these two approaches, where the instance selection
performed before the model learning removes only the most obvious cases to reduce
the time of the training and the fine-tuned instance selection is incorporated in the
model learning.
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Unfortunately, the first and third option is not an universal approach, as different
predictive models can perform the instance selection effectively in different situations.

Instances on which the trained neural network makes the highest errors are with
high probability outliers. So the first approach to noise reduction may be to simply
reject the instances for which the network error exceeds some threshold maxError.
But this approach is associated with two problems: it is too late to reject the outliers
after the network is trained, as they have already impacted the network mapping and
there is a difficulty in setting an arbitrary maxError value. For that reason to effec-
tively deal with noise in the data special error measures and neural network learning
algorithms have been designed.

In this chapter we will analyze how noise reduction can be implemented when the
predictive model is an MLP neural network. Neural networks also help us find the
redundant instances, especially in classification problems, but again to make it work
efficiently dedicated solutions should be used, for example to enforce the network
make much smaller errors on the redundant instances and to distinguished them in
this way, but this will be discussed in chapter 17.

In chapter 16 we will discuss the approach to joint instance selection with similarity
based and neural-network embedded methods and compare results of the methods
described in this chapter and of the joint methods.

15.2 Noise Reduction With Error Function Modifications

Multilayer perceptron neural networks (MLP) are usually trained by minimizing rmse
on the training set. Since the rmse measure uses the square of the error, the network
is more strongly enforced to adjust to the instances, on which it makes the biggest er-
rors. This is a very reasonable approach as long as the instances contain correct data.
However, in practice, we are frequently not sure, which data points are correct and
which contain wrong information. Typically the instances with the wrong information
are outliers, this is they do no match their neighbors. Adjusting the neural network
training to them is highly undesirable, and they should be rather removed from the
training set than strongly influence the network learning, proportionally to the square
of the error the networks makes on the outstanding instances. In this chapter we in-
troduce the methods that will detect the outliers and prevent the neural network from
representing them in the weight values.

Outliers and erroneous instances affect the network performance by leading to im-
proper mapping from the input to the output space. The rmse error function, can be
considered as optimal only for clean training data or data containing at most values
from zero-mean Gaussian distribution [4, 170]. Moreover, adding such noise to data
is sometimes practiced in order to improve the network generalization. We can say
that in this case we combat the noise with its own weapon. But this approach is used
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in quite different scenario - when the points in the training dataset are situated too
sparsely. In such cases, when the network maps exactly the correct but sparse points,
the decision boundaries in classification or the function approximation in regression
tasks can get far too complex to represent properly the data properties. However, the
added noise, or rather added additional points, that are called "noise" is not the noise
in the meaning of erroneous outliers. First, it has much smaller amplitude (smaller
variability) and second it is generated to have the mentioned zero-mean Gaussian or
similar distribution, while the distribution of the real noise is unpredictable.

Thus when the data contains lots of errors or outliers the rmse measure becomes
unreliable [171, 172]. To address this problem several methods, that use alternative
error measures, were proposed [173, 174, 175, 176, 177]. The methods are called
robust estimators and are mostly derived from robust statistical estimators. In these
methods no instance selection or noise reduction is performed before the network
training, but the training data is left in its original, potentially contaminated state, and
it is the task of the neural network training process to deal with the noise. From that
group we present in this chapter the following methods: ILMedS, LTA, LMLS, MAE,
MIF, MedSum and various static an dynamic transformations of the error function, as
trapezoid, exponential and others.

LTA, LMedS or bump error functions (like trapezoid or others) rely on the minimi-
zation of a saturated loss function or even a loss function that decreases as the dis-
tance between the two points grows beyond a certain limit. Indeed, this saturation or
decrease ensures that outliers producing gross errors have a very limited impact on
the estimation, as the gradient of the loss function in the saturated area is zero and in
some cases can be even negative [178]. These functions are not continuous and non-
differentiable, thus either some approximations of their derivatives in gradient-based
learning or non-gradient based neural network learning algorithms are required. We
use the second approach, training the networks with VSS (Variable Step Search al-
gorithm) [167, 168], which is a non-gradient based learning algorithm, presented in
chapter 14.

15.3 Static Robust Error Measures

The first approach we discuss to make the neural network training less sensitive to
noise is to replace the rmse error measure by other error measures based on the robust
statistical methods.

As it was mentioned, the rmse error measure is very sensitive to outliers, as it de-
pends on the second power of the distance between the desired and the actual network
output. This sensitivity is especially strong in regression problems, where the output
neurons has linear transfer function and thus there is no limit on the values of its out-
put signal. However, in classification tasks, this is also a problem, but not as severe,
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because the output neurons implement hyperbolic tangent (or logistic sigmoid) func-
tions, so the maximum difference between the actual and desired output raised to the
second power equals 4 with hyperbolic tangent or 1 with logistic sigmoid.

In the domain of robust error measures the frequently used term is "residuals". The
residuals ri are defined as:

ri =

q∑
v=1

|Ȳ (xi)− Y (xi)| (15.1)

where i is the number of the instance and q is the number of the neural network
outputs. So the residuals are just the sum of absolute values of the difference between
the actual response of the network to the instance Ȳ (xi) and the correct answer Y (xi).
We can write the performance function as:

E =
1

N

N∑
i=1

ρ (ri) (15.2)

where ρ(ri) is a loss function [4], ri is an error the network makes for the i-th instance
(15.1), and N is the number of instances in the training set. The most frequently used
loss function is a quadratic function:

ρ(ri) =
ri

2

2
(15.3)

commonly used as the mean squared error (mse):

Emse =
1

N

N∑
i=1

ri
2 (15.4)

In was proposed to use the derivative of the loss function to assess the influence of
the errors of the network responses on the network training [4, 171]:

ψ(ri) =
∂ρ(ri)

∂ri
(15.5)

If we consider this definition, for rmse (or mse) performance function, the influence
is linear, what means the greater errors more influence the network training.

To enable the neural network learning also in the presence of noise, several robust
learning algorithms, which use modified error functions were proposed [179, 173, 174,
171, 180, 181]. In next section we describe some of the robust error measures, which
reduce the impact of large residuals (which are usually caused by outlying data points)
and in this way achieve the robustness to outliers. These measures can be divided
into two groups: static an dynamic. Static measures remain in the same form during
the whole neural network training process, while dynamic measures adjust their form
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to the progress of network training. Moreover, there are not only appropriate error
measures, but also the whole learning algorithms adjusted to high noise levels.

15.3.1 Least Trimmed Absolute Values (LTA)

The first group of error functions adjusted to high noise levels is based on quantile
and trimmed performance measures [174, 177, 181]. A breakdown point of a robust
statistical estimator is defined as the smallest percentage ε of contaminated data that
can cause the estimator to take on aberrant values [4]. The most robust estimators have
very high breakdown points; the best that can be expected is ε = 0.5. However, as it
will be shown in the experimental part, it comes with a certain cost; the network train-
ing quality is deteriorated in the absence of noise comparing to the standard rmse
error measure. For the rmse ε = 0, while for the least trimmed absolute value (LTA)
and for the least median of squares (LMed) the breakdown point is close to ε = 0.5.

The least trimmed absolute value estimator (LTA) is one of the classical high break-
down point robust estimators. It uses absolute values of residuals as L1 norm, but
the summation is replaced with a trimmed sum. For the general nonlinear regression
model:

Y (xi) = f(xi, θ) + εi, i = 1, . . . , n (15.6)

where yi is the output variable and xi = (xi1, . . . , xik) is the independent input vector,
θ is a parameter, and εi are the independent and identically distributed random errors.
Using the LTA estimator a robust LTA error criterion [181] can be defined as:

ELTA =

h∑
i=1

(|r|)i:n (15.7)

where (|r|)1:n ≤ · · · ≤ (|r|)n:n are ordered absolute network output residuals. Thus
this error function (15.7) excludes from the training the instances causing largest er-
rors, considering them outliers.

In [182] the upper limit h was based on the median of all absolute deviations from
the median (MAD)[183]. The MAD is defined as:

MAD (ri) = 1.483 median|ri −median(ri)| (15.8)

and the upper limit is in this case:

h = ‖{ri : |ri| < 3 ∗MAD(|ri|), i = 1 . . . n}‖ (15.9)
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15.3.2 Iterative Least Median of Squares (ILMedS)

ILMedS is a very interesting example, where it is not enough to employ a robust
error measure, but the whole procedure of removing the instances exceeding the error
threshold is repeated iteratively. It is derived from the least median of squares (LMedS)
proposed in [184]. In the LMedS robust estimator not the sum of squared residuals is
minimized, as in typical neural network learning, but their median:

Emed = med ri2 (15.10)

An improvement to this measure was proposed in [174, 177], where after an initial
training phase, the robust standard deviation (RSD)[184] is calculated as:

σr = 1.4826 ∗ (1 +
5

(N −A)
)
√
E∗med (15.11)

where E∗med is the best achieved LMedS error, where N is the number of instances
and A is the number of attributes. Based on the RSD, all the training instances for
which the network responded with residuals exceeding a threshold r2i ≥ 2.5 ∗ σ2

r

get removed from the training set. The entire procedure is repeated iteratively several
times [174, 177]. In our experiments it was usually repeated 3 times.

15.3.3 Least Mean Log Squares (LMLS)

The error training function can be modified in many ways: in [171] Liano pro-
posed a new LMLS (Least Mean Log Squares) error function based on so-called
M-estimators, which should be optimal for the Cauchy distribution but performs well
also for other long-tailed error distributions. This modification of the training algo-
rithm was considered as referential in many works concerning robust learning methods
[173, 174, 176]. The LMLS error is then defined as:

ELMLS =

N∑
k=1

m∑
i=1

log(1 +
1

2
rki

2) (15.12)

where rki is the error of i-th output for the k-th training set instance, N is the size of
the training set and m is the number of network outputs.

A similar approach - the Hampel’s hyperbolic tangent with additional scale esti-
mator β, was used by Chen and Jain [179]. The scale estimator helped in determining
the range of residuals believed to be outliers: all the residuals larger than β were par-
tially excluded from the training procedure. Chuang and Su [173] proposed a similar
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error performance function using the annealing scheme to decrease β with the training
progress. In [172] a more sophisticated approach, using tau-estimators, was described.

15.3.4 MAE

This error formula can be also derived from robust M-estimators. As it was demon-
strated in [174], the MAE criterion is probably the most effective of all constant error
functions, when applied to training data with artificially introduced outliers. The mean
absolute error is defined as:

EMAE =

N∑
k=1

m∑
i=1

|rki| (15.13)

where rki is the error of i-th output for the k-th training set instance, N is the size of
the training set and m is the number of network outputs.

15.3.5 Median Input Function (MIF)

The median input function was originally proposed in [180]. In this case the traditional
summation of weighted neuron input signals is replaced with their median. The exper-
iments showed that MIF improves tolerance to weights and neurons failures and also
resistance to over-fitting. When the summation is replaced by more robust operation,
such as median, the neuron output becomes less sensitive to the changes of its inputs.
The MIF neuron output is defined as:

yout = f(med{wixi}
Ninp

i=1 ) (15.14)

where f(·) denotes neuron transfer function (e.g. sigmoid or linear), xj are neuron
inputs, wi is the i-th input weight and Ninp denotes input size. However, there are
several problems concerning practical use of MIF. Calculating MIF output has higher
computational cost than in the case of a simple sum. Moreover, the input function
is not differentiable, so it cannot be simply trained with gradient-based methods. In
[185] an approximated algorithm, based on the gradient for a simple sum, was pre-
sented. This approach seems to be very effective (also for non-differentiable error per-
formance based on the median of residuals [177]). A combination of the error measure
based on robust estimators was applied by El-Melegy in [175, 176].
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15.3.6 MedSum

Our experience with MIF was not so optimistic and we decided to use it together with
the standard summation function, which we called MedSum. Another problem with
the MIF measure is that when it is used for regression tasks, the model built by the
network can be non-continuous. This is why we decided to combine the median input
with sum, defining new input function:

yout = f(δmed{wixi}Ni=1 + (1− δ)
N∑
i=1

wixi) (15.15)

where δ determines the median influence on neuron input function. The new MedSum
(median plus sum) input function may help to overcome the problem of potential
output discontinuity.

Also several other static robust error functions, as Charbonnier loss, Cauchy loss,
Geman-McClure loss and Welsch loss were presented in literature [186].

15.4 Dynamic Robust Error Measures

The idea of dynamic error function is to smoothly reduce the outliers influence on the
network training, as in the case of static functions, however, these functions change
dynamically during the network learning process.

When the distance d between the actual and the desired network output is small
the error value E grows with d according to the original error function. For example,
if the original error function is quadratic, E is proportional to d2. After d reaches the
first critical value, depending on the implementation, E either still grows with d but
slower, or E takes a constant value.

However, if d further grows and reaches the second critical value, E begins to
decrease and finally reaches 0 and remains at 0 for any further growth of d. This cor-
responds to total elimination of this instance from the training process. Let us notice,
that whenE decreases its gradient is negative. Thus this approach may be problematic
for gradient based MLP learning algorithms. However, it can be efficiently used with
the VSS algorithm.

And the second difference. At the beginning of the training the network weights
are random and high d value does not necessarily indicate an outlier. Thus, at the first
epoch the standard error function has to be used with the critical points not used at
all for classification tasks, where the output layer neuron response is limited between
-1 and 1. In case of regression, the critical values can be set to very high absolute val-
ues, like -10 and +10. Then as the network training progresses, the weights gradually
begin to reflect the data structure and the network makes the highest errors for the
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outliers. To prevent the network adjust to the outliers, the critical points are gradually
decreased up to their final values. This is the overall idea and implementation details
are discussed in the next subsection.

15.4.1 Trapeziod, Exponential, Three-Parabolic and Triangular
Error Functions

The exponential error function is presented in Fig. 15.1. It is basically the same func-
tion that was discussed in chapter 4, however this time it changes dynamically in
a similar way as the trapezoid error function. The juxtaposition of three parabolas or
triangular error functions are other possible solutions (see Fig. 15.1). The trapezoid
error function is another example of that group [114] and it is explained in Algorithm
12 and Fig. 15.2

Algorithm 12 Neural network training with the trapezoid error function
for epoch = 1 . . .maxEpoch do
Error ← 0
t1← 7.5
for vector = 1 . . . numV ectors do
t1← t1/1.2
if t1 < 3.0 then
t1← 3.0

end if
t2← 1.5 · t1
Calculate network output Yactual
d← |Ydesired − Yactual|
if d < t1 and d ≤ t2 then
d← t1

end if
if d > t2 then
d← t1− (d− t2)

end if
if d > 0 then
Error ← Error + d

end if
end for
Modify network weights according to the training algorithm

end for
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Fig. 15.1. Error functions for noise reduction: trapezoid (blue), triangular (red) and
parab - a juxtaposition of three parabolas (green).

Fig. 15.2. Trapezoid error function (t1 and t2 asymptotically decrease), e is the epoch
number of the VSS algorithm.

15.5 Experimental Evaluation and Conclusions

The experimental evaluation and conclusions will be presented in the next chapter
on joining embedded and similarity based methods, where the methods presented in
this chapter are compared with the joint methods. Moving the evaluation to the next
chapter will allow to avoid presenting the same results twice.



Chapter 16
Joining Embedded and Similarity-based Instance
Selection

Abstract Instance selection can be performed before the model learning. It can be
also performed by the mechanisms embedded into neural network training. In this
chapter we compare the two approaches and discuss the possibility and usefulness
of performing them jointly, where the dataset is partially reduced before the neural
network training and the mechanisms embedded into the neural network further reduce
the dataset size.

16.1 Introduction

A question may appear: what is better, to perform the instance selection before the neu-
ral network training or let the neural network to perform the selection? In this chapter
we will try to answer this question by experimental evaluation of several approaches.
We can already say that although some methods work on average better than others,
there is no single method (at least we have not found this) that works best for the
whole spectrum of problems and thus the method should be adjusted to the data and
our preferences. In this chapter we focus on noise reduction tasks, were using jointly
the two methods can give the best results in terms of the neural network prediction ac-
curacy. The data compression task embedded into neural networks is experimentally
analyzed in the next chapter.

In the previous chapter we were discussing instance selection embedded into neu-
ral network training based on robust learning algorithms. In this chapter we discuss
joint instance selection before and during neural network training and we compare the
methods with those presented in the previous chapter. The evaluated method include
those developed by us, as TEF, T-ENN and modified GAS and some robust error mea-
sures developed by other researchers. We present the experimental results to determine
the quality of neural networks training with various instance selection algorithms for
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different levels of noise and outliers added to the training sets. In the training data we
added noise to outputs, inputs and to both: outputs and inputs and evaluated how each
method performed for a given kind and amount of noise.

16.2 Experimental Evaluation

We performed the test in 10-fold cross-validation, as usually. For data reduction before
neural network training we used the similarity-based instance selection with T-ENN
and outlier detection with the modified k-NN Global Anomaly Score. We used a stan-
dard MLP network with one hidden layer and the number of hidden layer neurons set
approximately to 50% of the number of attributes for each datasets. We used hyper-
bolic tangent transfer function in the hidden and output layer for classification and hy-
perbolic tangent transfer function in the hidden and linear transfer function in the out-
put layer for regression. The number of output neurons for regression was obviously
one and for classification was equal to the number of classes. The classification was
considered correct if the signal generated be the output neuron associated with the
class of the current instance was higher than the signals of all other output neurons (as
is typically done).

The MLP network was trained with the VSS algorithm (see chapter 14) for be-
tween 10 and 18 iterations depending on the dataset size with different error func-
tions described in the previous chapter (rmse, ILMedS, LTA, Medsum, TFE - trape-
zoid, parab - a combination of three parabolas, MAE, LMLS) and a possible error
weighting if k-NN Global Anomaly Score was used in the preceding step or discarding
some of the instances if T-ENN was used in the preceding step. The network error on
the test set was evaluated using rmse error measure for regression tasks and classi-
fication accuracy for classification tasks, even if a different error measure was used
in the training. That allowed to directly compare the results obtained with different
methods.

Since the purpose of the experiments was not to select the optimal neural net-
work architecture and number of iterations, but to evaluate the noise-robust methods
and their combinations with the similarity-based instance selection algorithms, we
did not perform any optimization of the two parameters. Moreover, we were rather
interested here in comparing the performance of different noise reduction methods
than in maximizing the network performance with all possible means.

We present the results of experiments using various amount of noise introduced to
the original dataset. The noise had Gaussian distribution amplitude with zero mean
and standard deviation of d. Each input value of each instance was modified with
a probability p by adding a random value from the mentioned Gaussian distribution.
The same was done for the outputs in regression tasks. For the symbols given in Tables
16.2 and 16.3 and the corresponding Fig. 16.1 and 16.2, the random noise with the
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parameters shown in Table 16.1 was added. For classification tasks, with probability
p the class of each instance was substituted with a class of a random instance.

Table 16.1. The parameters of noise added to the datasets. input/output d - amplitude of
noise added to inputs/output, input p - probability of adding noise to each input/output.

0 i1 i2 i3 i4 i5 o1 o2 o3 o4 o5 io1 io2 io3 io4 io5
input d 0.0 0.5 0.8 1.5 2.5 4.0 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.5 2.5 4.0
input p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5
output d 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.5 2.5 4.0 0.5 0.8 1.5 2.5 4.0
output p 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Some of the experimental results were partially published in our previous papers,
especially the results with MAE, LMLS, and MedSum were published in our work
[97] and we will not present the detail results of these methods here, because there
are already 15 methods presented in Fig. 16.1 and comparing more methods would be
impractical. To give the reader an idea how the three methods perform: their lines in
Fig. 16.1 would be situated between ILMeds and LTA, rather closed to ILMeds.

Fig. 16.1. Experimental results for regression datasets with added noise. Horizontal
axis: amount and location of added noise - see Table. 16.1. Vertical axis: average
rmse for all tested regression datasets.

As it can be seen the parab error measure gives very good results, but this error
measure was especially designed to give good results in these tests. In order to achieve
this for low errors it becomes the standard quadratic function, the same that is used by
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Fig. 16.2. Experimental results for classification datasets with added noise. Horizontal
axis: amount and location of added noise - see Table. 16.1. Vertical axis: average
classification accuracy for all tested classification datasets.

Table 16.2. Average relative rmse in 10-fold cross-validation for the regression
datasets with various amount of noise added.

0 i1 i2 i3 i4 i5 o1 o2 o3 o4 o5 io1 io2 io3 io4 io5
MSE 1.00 1.05 1.12 1.37 1.52 1.70 1.06 1.11 1.21 1.71 2.45 1.03 1.24 1.51 2.01 2.78
ENN-MSE 1.00 1.07 1.19 1.42 1.56 1.70 1.05 1.06 1.23 1.84 2.59 1.10 1.24 1.55 2.02 2.61
GAS-MSE 1.14 1.34 1.46 1.65 1.85 2.04 1.25 1.19 1.16 1.33 1.63 1.26 1.42 1.63 2.05 2.39
ILMedS 1.09 1.24 1.48 1.56 1.68 1.78 1.16 1.44 1.65 2.06 2.36 1.31 1.44 1.75 2.15 2.77
ENN-ILMedS 1.01 1.28 1.44 1.65 1.77 1.84 1.12 1.37 1.45 1.87 2.10 1.30 1.46 1.66 2.19 2.75
GAS-ILMedS 1.31 1.40 1.49 1.76 1.93 2.14 1.28 1.25 1.45 1.66 1.79 1.30 1.49 1.60 1.85 2.30
LTA 1.40 1.46 1.41 1.51 1.56 1.73 1.36 1.46 1.46 1.55 1.65 1.40 1.47 1.61 1.80 1.93
ENN-LTA 1.38 1.40 1.42 1.48 1.57 1.63 1.39 1.35 1.42 1.46 1.63 1.40 1.44 1.59 1.79 1.97
GAS-LTA 1.46 1.55 1.55 1.65 1.79 1.88 1.55 1.49 1.47 1.41 1.55 1.55 1.51 1.70 1.85 2.03
TEF 1.43 1.50 1.36 1.67 1.63 1.81 1.48 1.37 1.33 1.30 1.50 1.36 1.37 1.57 1.79 1.91
ENN-TEF 1.38 1.34 1.49 1.62 1.54 1.58 1.32 1.40 1.44 1.36 1.57 1.42 1.39 1.45 1.61 1.78
GAS-TEF 1.45 1.45 1.56 1.67 1.84 2.16 1.32 1.40 1.45 1.41 1.75 1.56 1.68 1.76 1.87 1.90
Parab 1.04 1.14 1.30 1.58 1.55 1.71 1.12 1.19 1.26 1.23 1.44 1.14 1.31 1.48 1.70 1.82
ENN-Parab 1.05 1.10 1.22 1.35 1.46 1.51 1.11 1.24 1.37 1.29 1.50 1.12 1.33 1.38 1.53 1.70
GAS-Parab 1.14 1.41 1.48 1.59 1.75 2.04 1.20 1.32 1.37 1.33 1.46 1.27 1.39 1.68 1.78 1.81

rmse for small error values. For that reason it performs better in the experiments than
the trapezoid error measure, although both of this measures follow the same scheme:
they initially increase with the error and then decrease. But this does not mean that
the parab error measure is better in practical applications than the trapezoid measure,
because in practical applications not always the preferred error measure is rmse.
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Table 16.3. Average relative classification accuracy in 10-fold cross-validation for the
classification datasets with various amount of noise added.

0 i1 i2 i3 i4 i5 o1 o2 o3 o4 o5 io1 io2 io3 io4 io5
MSE 1.00 0.99 1.00 0.97 0.96 0.95 0.99 0.93 0.88 0.89 0.82 0.98 0.92 0.88 0.84 0.67
ENN-MSE 1.00 0.99 0.98 0.98 0.96 0.93 0.96 0.92 0.88 0.89 0.84 0.94 0.91 0.90 0.82 0.72
GAS-MSE 1.00 1.00 0.98 0.97 0.95 0.92 0.99 0.96 0.94 0.88 0.86 0.97 0.95 0.87 0.84 0.66
ILMedS 0.98 0.98 0.96 0.92 0.91 0.90 0.92 0.96 0.91 0.89 0.86 0.95 0.92 0.87 0.87 0.73
ENN-ILMedS 0.97 0.97 0.98 0.94 0.92 0.90 0.93 0.93 0.91 0.86 0.86 0.95 0.91 0.88 0.84 0.72
GAS-ILMedS 0.96 0.96 0.95 0.89 0.91 0.88 0.93 0.92 0.94 0.90 0.88 0.92 0.88 0.90 0.80 0.72
LTA 0.99 0.99 0.97 0.97 0.94 0.91 0.98 0.96 0.95 0.90 0.79 0.98 0.93 0.90 0.79 0.52
ENN-LTA 0.99 0.99 0.98 0.97 0.95 0.92 0.99 0.97 0.96 0.89 0.77 0.98 0.95 0.90 0.75 0.47
GAS-LTA 0.98 0.98 0.98 0.95 0.94 0.92 0.98 0.97 0.96 0.92 0.84 0.98 0.98 0.92 0.83 0.50

16.3 Conclusions

The experimental evaluations clearly show that there is no a single best noise reduction
methods that covers the whole spectrum of problems. Instead we suggest to adjust the
noise reduction method to the amount of noise in the data. The standard MLP training
with the rmse error measure works best for high quality data, that contains very little
noise. There may obviously arise the question how can we now the noise level in
our data. Frequently we can’t know this ahead and therefore it is suggested in such
situations to assess the noise level.

One way to do it is by training the network with the standard rmse error measure.
In our experiments if for standardized outputs, rmse on the test set was below 0.15
then the amount of noise was low and likely rmse would be the best measure. If
it is above 0.5 than the robust error measures should be better. Also based on some
statistics we can predict, which methods will achieve best results in accuracy or rmse,
as was discussed in the part 1, chapter 1 of the book, based on the performance of
1-NN algorithm we can assess the amount of noise in the data and make an informed
guess of the best method.

When the results for both types of problems, regression and classification are con-
sidered, combination of ENN and LTA algorithms shows the best performance. In
most regression datasets the TEF and parab methods performed especially well, in
some cases allowing to obtain rmse on the test set up to 40% lower than any other
method. The regular rmse error measure, even for not contaminated data, in most clas-
sification tasks was outperformed by robust methods. Also joining the modified k-NN
GAS algorithm with the MedSum error measure proved to work well for regression
tasks, comparatively to LTA. This can be explained by the fact that when a more sta-
ble operation, such as median is added to the summation in the neuron function, the
neuron output becomes less sensitive to perturbances in the data.
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For classification tasks, if the noise was added to output or to both output and input
the best methods were combinations of GAS and LTA, except for the highest level
of noise, where a combination of GAS and ILMedS or ENN and ILMedS performed
better. Another interesting finding is that the modified k-NN GAS usually allowed for
stronger noise reduction than ENN. However, for classification tasks the differences
between particular methods of noise reduction were smaller than for regression tasks.
That is also because, the robust learning algorithms (LTA and ILMedS) were designed
to work with regression tasks and in classification, where the errors are limited by the
hyperbolic tangent transfer function they cannot show their full effectiveness.

The ENN and GAS methods combined with different error measures usually keep
their general direction: if the error measure was stable with increasing noise, the hybrid
version of the method is also stable and improves the results a little. When the error
grows rapidly for the basic algorithm, when the noise increases, it grows also for
the modified method. In this cases the ENN or GAS reduced the error significantly,
although the results were still much worse than with using a robust learning algorithm
(robust error measure).



Chapter 17
Joint Feature and Instance Selection from Neural
Networks

Abstract There are two basic ways to reduce the training data size: feature selec-
tion and instance selection. Using these techniques appropriately can also improve the
model prediction. When the model is a neural network, we have plenty of options to
reduce the data size (feature selection or instance selection first, features or instances
selection before the network training or during the network training either sequentially
or simultaneously). In this chapter we discuss the options and present our recommen-
dations.

17.1 Introduction

In embedded methods, feature selection is an integrated part of the predictive model
learning. Thus, at the same time, the model is trained and feature selection is per-
formed. In terms of simplicity this is a very good solution. However, if the dataset is
very large, the computational cost of that approach can still be very high and then using
feature filters can be a more practical approach. For example, decision trees perform
forward selection. Linear regression does not directly perform feature selection, but
allows us reject those features for which the smallest weights are assigned. Similarly
with the neural network - one can reject these features, for which the sum of weights
of all neurons of the first hidden layer is the smallest. In addition, in embedded meth-
ods, we can use regularization by using an additional penalty term for too complex
models in the objective function or more advanced regularization algorithms.

Although feature selection and logical rule extraction are closely related topics, we
decided to split them into two separate chapters, to improve the organization of the
book.

Rule extraction methods perform also feature selection as a by-product. This can
be especially clear that when a given feature is eliminated in the selection process -
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then it will not be included in any logical rule. However, the feature selection methods
do not provide logical rules, although the features that obtain higher weights in feature
filters are more likely to be included in the rules, which cover more examples. In this
chapter, we will first review the approaches to feature selection from neural networks.
We will focus on the decompositional methods, where the feature selection or feature
weighting is performed by the analysis of the network structure and connections.

Then we will experimentally evaluate some possible combinations of feature and
instance selection in neural network training. We will start from evaluating different
feature rankings to find the best one for our purposes. Then we will evaluate the
similarity-based instance selection methods and choose the ones, which best perform
with our data and neural network. Then we will analyze the mechanisms of feature
and instance selection embedded into neural networks and finally we will draw some
conclusions. As there are thousands of possible combinations, we will not even try to
test all of them, but rather focus on the groups of solutions and discuss their strong
and weak points and the possibility of using different methods together.

17.2 Feature Selection Embedded into Neural Network Learning

Feature selection with feature filters before the model training and with feature wrap-
pers was presented in chapter 6. Thus in this chapter we will focus on feature selection
embedded into the neural network training.

Feature selection with neural networks can be done in several ways. The two basic
approaches are by the analysis of weights, including pruning methods and by input
data perturbances [187, 188, 189, 190]. In perturbance analysis we replace the values
of particular feature with random values or we temporarily delete it in the test vectors
and see how this influences the network accuracy [191]. In weight analysis we assume
that the less important features will generate smaller absolute values of weights and
we can reject the features with the lower weighted sum of weights ri. The weights can
be also enforced to small values with a regularization term. The weight analysis was
used in our experiments.

More complex methods can also consider the derivatives or the output neuron
weights. Due to the non-linear transfer functions the results depend on the actual po-
sition on the transfer function and in classification task at the end of the training the
position is predominantly in the saturated area, so there must be some more effort put
into constructing an efficient solution. We used the following feature ranking measure:

ri =

H∑
h=1

|win|∑F
f=1 |wfn|

(17.1)
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where ri is the predictive power of the i-th feature, H is the number of hidden layer
neurons, F is the numbers of features, win is the weight connecting the h-th hidden
neuron with the i-th feature and wfn (= 0...F ) is the f -th weight of the h-th hidden
neuron.

17.3 Other Methods from Literature

In [192] a feature weighting method for classification tasks by extracting relevant
information from a trained neural network was proposed. This method weighted the
attributes based on strengths of related weights in the neural network, assuming, that
stronger connections from the input assigned to that attribute to output mean that the
attribute is more important. After the training, the attribute weighting was extracted
from the neural network in the following way:

Wi =

H∑
j=1

O∑
k=1

|Vi,j × Vj,k| (17.2)

where Wi is the feature weight for input node i, Vi,j is the link strength from input
node i to hidden node j, and Vj,k is the weight from hidden node j to output node
k, H is the number of hidden nodes and O the number of output nodes. The double
summation covers all possible paths from input node representing a given features to
all output nodes.

In [193] an instance-wise feature selection method called INVASE was proposed.
The method consists of 3 neural networks, a selector network, a predictor network and
a baseline network used to train the selector network with the actor-critic methodology.
The advantage of the INVASE is the flexibly of discovering different feature subsets
for each instance.

In [194] the authors presented a feature selection and an outlier detection method.
If the data is very noisy, first the outlier detection and removal is used. In order to
accomplish this, the centroids of each class are computed and the instances laying very
far from them are considered outliers. The second step is feature selection performed
by a genetic algorithm, where the features are encoded in the chromosome and the
neural network is used as the evaluator model.

A method called DeepLIFT [195] transposed the output of the neural network to
a reference input in order to compute the contribution of each input variable.

In [196] Shapley values were used to compute the variable importance, and locally
linear models to explain the linear dependency for each sample.
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17.4 Data Reduction with Boundary Vectors in Neural Networks

In this section we focus on instance selection to reduce (condense) the data size in
classification tasks using the concept of "boundary vectors". However this step should
be performed after noise removal, because always noise should be removed first from
the data and then data size reduction can be performed (the noise removal embedded
into neural networks was discussed in chapter 15).

In classification problems we need to determine the class boundaries and to obtain
this we need only the instances, which are situated close to the boundaries. So the
instances that are far from the decision boundaries and surrounded by other instances
of the same class can be removed, as they do not bring any useful information to
the classification problem. This idea of boundary vectors known from support vector
machines can be also applied to neural networks [197, 198]. However, there is still
problem how to identify those instances.

While removing irrelevant examples as those, on which the neural network makes
the smallest errors, the examples that get removed are those far from the decision
border, so those that are not necessary to determine the decision border and thus the
decision border remains intact.

For classification tasks we use usually an MLP neural network with hyperbolic
tangent or logistic sigmoid transfer function with as many neurons in the output layer
as the number of classes. When an instance is processed by the trained neural network,
the output neuron associated with this instance class gives signal = 1 and all the other
output vectors associated with different classes produce the output signal = -1 for
hyperbolic tangent transfer function or 0 for logistic sigmoid. The error for a single
vector xi used for instance selection is given by the following formula:

Error(xi) =

nc∑
i=1

(yai − yei)2 (17.3)

Where nc is the number of classes, which equals the number of output layer neu-
rons, yai is the actual value of i-th output neuron signal and yei is the expected value
of i-th output neuron signal (which is 1 if the current instance class is represented by
the i-th output neuron and -1 or 0 otherwise). We assume that a vector is classified
correctly if the neuron associated with its class gives a higher signal than any other
output neuron. If an instance of the training set is classified incorrectly by a trained
neural network, the error that the network gives as a response to that instance is high
(Error(xi) > maxError). On the other hand if an instance is classified correctly
and is situated far from a classification boundary then it is located on the saturated
part of the transfer function. In this case, the network error for that instance will be
very low (Error(xi) < minError). Thus this instance can be removed from the
training set T. In theory that can be done after the network training. In this aspect it
differs from noise reduction, where the reduction must be performed during the train-
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ing to prevent the noisy instances from influencing the network weights. The instances
located in the middle of their classes do not influence network weighs, as the error the
networks makes on them is so small, that it has no practical impact on the weight
changes. Only the instances close to decision boundaries support the network learning
process.

There still remains a question how to identify these instances. The instance removal
can be done after the training only in theory as it was written, but in practice the neural
network frequently works too well for this approach. Thus the removal should be done
earlier, by gradually removing the instances on which the network already generates
very small errors. As the experiments showed, when the neural network is trained in
a typical way, then frequently the total error can get very low. It is so low that it can
take almost zero values as well for the "inner" instances as for the boundary instances.
The pseudo-code for the embedded instance selection for data size reduction is shown
in Algorithm 13.

Algorithm 13 Instance selection embedded in neural network train-
ing
Require: T,minError
n← |T|;
for i = 1 . . . I do

train the network on T
for n = 1 . . . N do

if Error(xn) < minError then
T← T \ xn
N ← N − 1

end if
end for
adjust minError

end for

The network is trained for I iterations with some training algorithm. After each
iteration i the error the network makes on each of the N instances is recorded and
if it is below minError, the instance is removed. Then minError is adjusted by
decreasing it, because as the training progresses the network tends to make smaller
error on each instance xn, which is not an outlier. As the minError depends more
on the neuron weight values, a better solution than using a constant value is to use
a relative value in relation to the error the network makes on other examples. We use
for minError some percentage of the average error values of all correctly classified
instances of a given class.
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Fig. 17.1. The instances of Iris dataset selected by CNN (dot inside circle), by neural
network (cross) as those with low error values and by both (big solid circle). As it can
be seen the neural network selected instances, which are closed to the borders of the
classes. Color denotes class. (figure based on our work [198])

17.5 Joint Feature and Instance Selection Embedded into Network
Learning

To determine the optimal order of joint feature and instance selection with neural
networks, we conducted experiments trying feature selection first, instance selection
first and simultaneous feature and instance selection. As in the case of the selection
prior to network learning, the results confirmed that the best option in most typical
cases is to perform feature selection first and then instance selection. Thus the network
training consists of three parts: 1. standard network training, 2. removal of irrelevant
features, 3. removal of irrelevant instances. After the second step the training can either
continue or it can be restarted from random weights. Better results were obtained with
the restart.

We observed in the experiments that instance selection embedded in neural net-
works worked well, but feature selection was in some cases as good as done with
feature filters and in other cases less effective. For that reason we added another op-
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tion for feature selection. First we build a simple neural network with three hidden
units and train this network separately on each feature. We use early stopping, so
that we can measure the classification accuracy on a training set, without the need of
cross-validation. Then we sort the features by the classification accuracy. Then we add
the features to the reduced dataset starting from the most informative one. However,
before we add the next one, we calculate its correlation with all the already added
features. If the correlation with at least one of them is higher than the threshold, we
reject this feature. This appeared to be a simple and yet quite accurate option.

17.6 Experimental Evaluation

We conducted the experiments to evaluate particular methods in terms of classification
accuracy and data compression and determine the Pareto front for each method in the
compression-accuracy coordinates, as shown in Fig. 17.2.

Table 17.1. Average values over the 10 datasets of classification accuracy of neural
networks (F100-A, F60-A, F30-A) and number of selected instances (F100-I, F60-
I, F30-I) for respectively 100%, 60% and 30% of features with three data selection
methods. The real numbers of features were the nearest integers to these percentages.
(based on our work [198])

Method IS F100-A F100-I F60-A F60-I F30-A F30-I
FS: Inf. Gain no selection 92.74 100 92.12 100 91.02 100

IS: ENN+CNN m=8, k=9 93.01 35.22 92.30 29.11 91.03 27.81
with variable m=7, k=9 92.65 18.91 91.58 16.15 88.76 15.11
m in k-NN m=5, k=9 87.44 7.11 87.11 5.89 87.72 6.41

IS: ENN+IB3 ENN+IB3 87.15 3.85 86.88 3.98 87.01 4.95
FS in separate no selection 92.74 100 92.90 100 91.45 100

network minE=0.03 93.02 38.45 92.30 32.98 91.23 36.40
IS embedded minE=0.1 92.64 19.98 91.91 22.12 88.76 26.78

into NN minE=0.3 89.05 7.11 88.23 5.89 88.25 10.23
FS embedded no selection 92.74 100 92.12 100 88.34 100

into NN minE=0.03 93.02 8.45 92.15 33.15 88.94 38.14
IS embedded minE=0.1 92.61 19.98 91.05 24.98 87.02 14.18

into NN minE=0.3 89.05 7.11 87.91 9.15 86.15 10.78

The neural networks with one hidden layer was trained using the Rprop algorithm.
The numbers of neurons in the hidden layer was equal to the geometric mean of the
number of inputs and number of classes. We performed the experiments on 10 clas-
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Fig. 17.2. Retention - accuracy plot (note: the retention axis is in logarithmic scale).
A Pareto line is shown separately for each method. Blue rectangle = FS: Inf. Gain, IS:
Mod. ENN+CNN. Black cross = FS in sep. network, IS embedded. Red ellipse = FS
and IS embedded. Green triangle: FS: Inf. Gain, IS: ENN+IB3.

sification datasets from the Keel Repository [8] (Ionosphere, Image Segmentation,
Magic, Thyroid, Page-blocks, Shuttle, Sonar, Satellite Image, Penbased, Ring). As
always, all the experiments were performed in 10-fold cross-validation and repeated
10 times. We used similarity-based and the described in this chapter embedded into
neural network instance and feature selection methods.

17.7 Conclusions

For the biggest datasets in classification tasks we were able to remove over 90% of
instances without noticeably accuracy loss, but for smaller datasets the reduction was
much weaker.

For most datasets, the most effective data selection is performed by feature se-
lection followed by instance selection. This is true as well for the selection prior to
network training as for embedded into the neural network. That problem was already
discussed in details in chapter 6, section 6.4, so the results should not be surprising.
As it was discussed it is not always best to perform feature selection first, but to per-
form noise reduction before data condensation and in most datasets it happens that
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more noise is associated with features than with instances, but it does not have to be
so every time.

The Pareto front for the selection with information gain and ENN+IB3 and then
modified ENN+CNN was situated closest to the right lower corner, so this method
worked here best. However, each of the methods have some strengths and weaknesses.

Feature ranking obtained by learning a simple neural network with single feature
datasets and with removal of highly correlated features worked very well. The standard
feature rankings, as information gain, were on the second place, while feature selection
by neural network weight analysis on the third place. However, the last method can be
further enhanced by considering the data flow through the entire network, not only the
input to hidden weights and thus may produce better results.

Embedding noise reduction into the neural network learning process gives usually
very good results. That can be attributed to the shape of decision boundaries, where
the k-NN algorithm have the tendencies to smooth the edges (see Fig. 2.2 in chapter
15).

Instance selection as noise removal worked quite well in each case. There was how-
ever one problem with instance selection as data compression. Both DROP-3 and the
instance selection based on the network error overcomes the shortage of CNN that it
works in a random order, as they both preserve more of the instances situated close to
class boundaries. However, both of the methods rely on the distance to the opposite
class measured either directly (CNN, IB3 and the DROP family) or by the instance
location reflected by error produced by the hyperbolic tangent function transforma-
tion. But both of the approaches do not consider the fact, that the distance between
opposite class instances may be different in different areas of the input space and thus
sometimes they tend to remove rather the instances closest to the boundary, even if
they are behind the "first front" of instances than the instances that are further, but
in the "first front" and thus are needed to preserve the boundary. That is considered
by other instance selection methods, which examine the classes of neighbor instances
of Voronoi cells, but in spite of that they do not perform better. Finding an effective
solution to this problem is still open.

It is likely that the results can be further improved if other instance selection algo-
rithm, as IB3 or DROP-3 are applied orm of k neighbors in the same class are required
in the weighted k-NN (where m is a parameter). The later was recently partially ad-
dressed by an instance selection method that optimizes the k in k-NN individually for
each instance [103]. In the same work the authors allowed for selecting one instance
more than once, what makes sense for some learning models reducing their training
time, by adding an additional column with the number of how many times a given
instance is selected and just multiplying the result for this instance by this number.





Chapter 18
Special Neural Networks for Data Selection and
Rule Extraction

Abstract Logical rule extracted from neural networks explain the decisions made by
the network and the properties of the data discovered by the network. The decompo-
sitional methods of logical rule extraction analyze the connections between neurons
in a neural network. Because the system of connections among neurons is very com-
plex, including the complex interpretation of the neural transfer functions, the obtained
rules tend to be complex and not very accurate. In this chapter we address these short-
comings, by constructing an incremental network with simple connection structure
and with dedicated hidden neurons for each class. This removes the difficult-to-solve
interferences between various logical rules and makes the rule extraction and data
selection much easier.

18.1 Introduction

Neural networks belong to the best of the prediction models. However, the problem
connected with them is that they are usually treated as black boxes that map some
input variables to some output variables, but we do not know why they make the deci-
sions they make. That makes some problems with implementing neural-network based
predictors to the tasks where the user needs justification why particular decision was
made. Many users do not want to trust a prediction model that they do not understand
and consequently will not use it for critical and important tasks.

Logical rule extraction from neural networks is the process that results in presenting
us the knowledge discovered in the data in a form of simple logical rules. This has two
advantages: 1. the user will trust the network results, 2. the user can enhance their
knowledge about the process by learning some new dependencies discovered by the
neural network.

219



220 18 Special Neural Networks for Data Selection and Rule Extraction

Especially extracting rules understandable for humans for the nonlinear regression
problems is a complex and challenging task, which is always associated with a trade-
off between the rule complexity and thus the ability of humans to understand them
and the rule accuracy. Moreover, there is not strict consensus how the rule understand-
ability should be measured, therefore it is frequently difficult to tell that one method
of rule extraction is superior to the other. That is also true for logical rule extraction
for classification tasks.

The research on logical rule extraction from neural networks began on a wide scale
in 1990-ies and continues till these days. Thus a lot of algorithms were proposed. We
will shortly present some of the most characteristic ones, mainly from the decompo-
sitional group but also some pedagogical and hybrid methods.

Also instance selection is connected with rule extraction, as the instances that are
not covered by any rule generated from the network can frequently be considered noise
and thus can be removed. Moreover, the neural network is frequently able to reduce
the noise, thus better reflecting the problem properties than the raw dataset describing
the problem.

The simplest solutions are the best if they provide the same results as more complex
ones. The simplest rules are those that are short and that provide hyperrectangular
decision borders in the feature space, where the borders are parallel to the feature
axes. It is not always the best solution to use this kind of rules, as they may not be
the best way to describe all systems, but as long as they are as good as other more
complex rule sets, they should be preferred as the simplest to understand.

In this chapter we will present a special architecture of a neural network designed
for simultaneous feature and instance selection and logical rule extraction. We will
present two solutions; one for classification and one for regression tasks. These so-
lutions are based on the decision borders parallel to the feature axes, however if it
is required to increase the rule accuracy they allow for an addition of a simple skew
(oblique, not parallel to feature axes) part in the rules.

An example of a crisp logical rule parallel to the feature axes:

if f1 > 20 and f2 > 30 then classA

An example of an oblique logical rule:

if f1 + f2 > 60 then classA

where f1 and f2 are values of the features. The oblique parts added to the rules can
be used as well for classification as regression tasks, but in regression they improve
the accuracy more frequently.
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18.2 Network Construction and Training

We will call the network a DSRE network (Data Selection and Rule Extraction net-
work). First we present the structure of the network, then logical rule extraction for
classification tasks and for regression tasks and finally the instance selection. The first
idea of the network was presented in our previous work [199]. In this work we extend
its functionalities to process regression tasks, to generate oblique part of the rules and
to incorporate instance selection.

An important source of difficulties with feature selection and even more with de-
compositional logical rule extraction from classical MLP neural network is that the
signal propagation through the network is very complex, because particular weights
of the hidden neurons are common for each output neuron representing each class.
The solution that we consider here is to use dedicated hidden neurons for each class
in the classification problem and in the regression problem to split the whole output
variable range into several bins and also use separate hidden neurons for each bin, as
shown in Fig. 18.1. This will significantly simplify the analysis and will also make
the network easier to train, as instead of a multi-class classification problem we will
get several single classes (or several two class problems: this class all any other class).
Also a specific training algorithm is required and we use the VSS algorithm (see chap-
ter 14), but also Rprop with some adjustments can be used.

The network requires discrete input data. If the data is continuous, it must be dis-
cretized prior to the training or at the run-time by an additional network layer.

The basic version of the network uses three layers of neurons. Neurons implement
sigmoidal transfer function with the slope β. Initially β=1 and during the network
training β gradually increases and finally the transfer functions become step functions.
Additionally a penalty term is used to enforce all the weights w to take finally only
three possible values (-1,0,1):

Error = Error +

W∑
i=0

(1− wi)wi(1 + wi) (18.1)

whereW is the number of weights in the network. The biasses are enforced to take any
integer value plus 0.5 (e.g. -2.5, -1.5, -0.5, 0.5, 1.5, etc.) for the hidden layer neurons
and only -0.5 or 0.5 for output layer neurons.

At the beginning one hidden neuron is created per class (Neurons N[1,0] and N[1,1]
in Fig. 18.1). The second hidden neuron per class (N[1,2] and N[1,3]) is added, if the
results with only one neuron are not satisfactory, this is if too many instances are mis-
classified. Each hidden neuron classifies each cluster of the data, starting from the
biggest cluster. What means "too many instances" is to be determined by the user by
a parameter that sets the minimal number Mn of instances in a cluster. In a special
case Mn = 1, what means that the network is required to classify correctly all in-
stances from the training set. However, it is not difficult to oversee that in this case the
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network will have poor generalization abilities, so usually some higher number will
be preferred.

If the results are still unsatisfactory then the next hidden neuron is added. The num-
ber of hidden neurons per a given class should equal the number of the data clusters
within this class, which contain at least Mn instances and which cannot be joined
together without decreasing the classification accuracy.

18.3 Rule Extraction and Feature Selection for Classification Tasks

First let us consider this network for classification tasks and then we will discuss the
regression version, which is based on the classification version with some extensions
added.

Logical rules are extracted after the network is trained. Therefore, the rule extrac-
tion process does not depend on the algorithm used to train the network.

Each cluster is represented by one disjoined rule generated by the neuron and con-
tains some instances. The order of the clusters expresses the importance of the clus-
ters (how many cases they classify correctly). The clusters can be added with positive
weights (w = 1) between the hidden and the output neuron and with negative weights
(w = −1). Positive weight means that the instances in this cluster are included in
the class and negative weight means that they are excluded (they are exceptions). For
example let us assume that there is a following rule describing the data:

if f1 > 20 and not 40 < f1 < 45 then class A

in this case all instances with f1 > 20 will go to the first cluster represented by the
first hidden neuron with positive weight to the output neuron and all instances with
40 < f1 < 45, which are the exceptions to this rule, will go to the second cluster
represented by the second hidden neuron with negative weight to the output neuron.

Weights as well between input and hidden as between hidden and output neurons
that have already been trained are frozen. That is once a cluster is determined it is no
longer evaluated and we consider only the remaining data. This makes the training
easier and minimizes calculation time. This incremental learning decomposes the task
into learning general rules first and then exceptions to these rules instead of trying to
modify all rules at once to fit the data.

The network diagram is shown in Fig. 18.1. Each value of a discrete feature is
propagated through a separate input neuron. So the number of input neurons equals
the sum of the numbers of all distinct values for all feature (either original symbolic
values or values that represent particular discretization bins).

If a given value of a certain feature occurs in a given instance, then it is represented
by the input signal, which equals 1. For all values, which do not exist in a given
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instance, the incoming signals are zero. If a presence of a given value contributes to
a given class, the hidden neuron weight will take positive value after the network is
trained. If the absence - then the corresponding weight will take negative value. If the
attribute is irrelevant to this class then the corresponding weight will be zero.

For symbolic attributes the rules tends to be longer, as each value of the attribute
that contributes to a given class must be listed in the rule. For discretized continuous
values, we can join together the neighbor values into one and thus for example the
original rule generated by the network:

if (f1 < 20 or 20 < f1 < 40 or 40 < f1 < 60) then class A

will become:

if (f1 < 60) then class A

And as this is in practice a very frequent case, the final rules get much simplified.
The hidden neurons generate M-of-N rules (ifM assumptions out ofN are satisfied

then the condition is true). If the sum of all N inputs of a hidden neuron exceeds its
bias, which has the value of M -0.5, then a logical rule is generated. Either the M-
of-N rules or the AND/OR rules may describe a given problem more adequately and
may be preferred in a given situation. Thus to get the simple AND/OR rules, we must
consider the entire attributes and not only their particular values. The relationship
between particular values of the same attribute is always OR as it is not possible
to have more than one value of one attribute in a single instance. The relationship
between the obtained values of different attributes can be AND (then bias equals the
number of attributes - 0.5), OR (then bias equals 0.5), or M-of-N (then the bias equals
M -0.5)

The output layer performs always OR operations, combining rule conditions into
final rules. The obtained rules that are extracted from the data by the analysis of the
weights in the trained network are quite straightforward and intuitive.

The features which come mostly with zero weights at least for the most numerous
data clusters are natural candidates for removal. In this way feature selection is in
a matter of fact performed by logical rule extraction. After the features get removed
the network can be left as it is if the removal does not decrease classification accuracy
or otherwise it can be retrained without these features.

The way to reject the outliers is by rejecting the clusters with fewer instances than
some predefined number. The way to reject instances for the purpose of data conden-
sation is by eliminating the instances on which the network makes the smallest errors,
as described in chapter 15.2.
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Fig. 18.1. Architecture of the DSRE neural network. The optional oblique rule part is
shown in blue.

18.4 Rule Extraction and Feature Selection for Regression Tasks

The presented DSRE network structure can be extended to regression problems. We
propose two steps of the extension. The first step - "coarse approximation" uses dis-
cretization to convert the regression problem to multiple class classification (the black
part of the network in Fig. 18.1). The second step - "fine approximation" additionally
uses one or two-variable linear regression inside the discretization bins (the blue part
of the network in Fig. 18.1).

The process of DSRE network construction and logical rule extraction for regres-
sion problems:

1. Discretize the output data into several bins, temporarily converting the task to the
multi-class classification tasks.

2. Discretize the input data in the same way as for classification problem.
3. Train and build the network in the same way as for classification tasks, performing

also data compression.
4. Within each discretization bin (each temporary class) consider separately the part

of the data represented by each hidden neuron.
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a. Find correlation coefficients between each input feature f and the output y
b. Select the input variable with the strongest correlation
c. Approximate the dependence with a linear regression - this will replace the tem-

porary class in the rule. An example illustrated in Fig. 18.1:
if (0.3 < f1 < 0.5 and f2 < −0.5) then class A (output between 0.4 and 0.5,
thus can be assumed 0.45)
will be replaced by:
if (0.3 < f1 < 0.5 and f2 < −0.5) then y1 = 0.45 + c1 · f2
assuming that the strongest correlation withing this hidden neuron data is be-
tween f1 and output.

d. Optionally two inputs can be used instead of one if a higher rule accuracy is
preferred over simplicity. For example:
if (0.3 < f1 < 0.5 and f2 < −0.5) then y1 = 0.45 + c1 · f2 + c3 · f1.

5. Perform instance selection to remove outliers as described in the next subsection.

The same oblique rules can be added to the classification version of the network.

18.5 Instance Selection

Two scenarios of instance selection must be distinguished: data compression and noise
reduction.

1. Data compression. The first phase of the network training uses sigmoidal transfer
functions with the slope β=1. Before going to the second training stage, which
increases β, the instances, which cause the smallest network error are found and can
be removed. This is done in the same way as in a standard MLP network training
and as in the case of standard MLP architectures the method can be used only for
classification tasks.

2. Noise reduction. This is done differently than in a standard MLP network. The
first hidden neuron, as it was discussed, represents the larger cluster of instances
for a given class. The second hidden neuron - the second larger cluster and so on.
Finally the last hidden neuron or several last hidden neurons represent very few
instances and thus those instances can be considered noise and removed from the
dataset. In standard MLP networks instances, on which the trained network makes
big errors can be considered noise. In case of DSRE networks, the hidden neurons
are added one by one and the instances on which the network makes big errors are
first expected to belong to another data cluster and the next hidden neuron is added
for them. However, the clusters gradually contain fewer and fewer instances and
at a certain point we can decide which instances in the smallest clusters should be
rejected as the noisy ones.
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18.6 Other Solutions from Literature

18.6.1 Decompositional Rule Extraction from Neural Networks

Decompositional methods extract rules by analyzing the values of weights and propa-
gation of signals in the neural network. Thus the rules directly explain the knowledge
representation in the neural network.

Subset Algorithms and M-of-N
Several similar decompositional methods such as SUBSET [200], KT [201], RULE-

OUT [202] and Destructive Learning [203] differ only in some details but use the same
methodology of rule extraction. The SUBSET method works as follows:

1. Find all combinations p with positive weights to neuron N whose sum exceeds its
threshold

2. For each p = p1, ..., pi

a. find the set Sn of all combinations of negative weights to N , such that the sum
of the weights of p and the weights of N −n exceeds the threshold of N , where
n is an element of Sn

b. for each element n = n1, ..., nj create the rule: if p1,...,pi, not n1,..., not nj then
N

To overcome the high complexity of SUBSET and to further increase the compre-
hensibility of a rule system, Towell [200] developed the following M-of-N algorithm:

1. For each neuron, cluster the incoming connections into groups with similar weights
2. Average the weights within each cluster
3. Eliminate the clusters without significant effect on the output of the neuron
4. Re-train the network with frozen weights to optimize biases
5. Form a single rule for each neuron
6. Simplify rules to M-of-N form

NeuroRule and M-of-N3
Neurorule and M-of-N3 are two similar decompositional algorithms developed by

Setiono [204]. They share the common network training and rule extraction technique:

1. Train the network until the required accuracy is obtained
2. Remove the redundant connections in the network by pruning while maintaining

its accuracy. Steps 1 and 2 can be repeated several times if required
3. Discretize the hidden unit activation values of the pruned network by agglomerative

clustering (the neighboring activation values of different input patterns are joined
together as long as this does not change the network classification)
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4. Extract rules that describe the network outputs in terms of the discretized hidden
unit activation values (find any combination of hidden neuron signals that causes
the output neuron to fire, i.e. to produce the positive output signal)

5. Generate rules that describe the discretized hidden unit activation values in terms
of network inputs (find any combination of inputs that makes the hidden neuron
activation within particular discretization interval)

6. Merge the two sets of rules to obtain a set of rules that relates the inputs and outputs
of the network

Both the hidden and output neuron use hyperbolic tangent transfer functions. The
algorithms require discrete input data. The present value of a given feature is coded as
+1 and the absent values as –1. The training process starts with an oversized network
that is successively pruned. In the case of M-of-N3, after the small weights are re-
moved, the remaining positive weights are set to +1 and the negative ones to –1. Since
the network training starts with random weights, different rule sets can be extracted
from the same dataset, depending on the initial weights distribution. When we met
Setiono and discussed these issues with him, he admitted that he considers Neurorule
the best of the many rule extraction algorithms he created.

Other Decompositional Methods for Classification Tasks
Also a lot of other rule extraction methods from neural networks were proposed.

Few examples are provided below. Gupta et al. [205] proposed a GRG method, which
extracts rules for data with discrete attributes. Neural networks with one hidden layer
are trained and the GRG algorithm is applied to their discretized hidden unit acti-
vation values. Setiono et al. [206] proposed a Recursive Rule Extraction algorithm
(Re-RX), which generates hierarchical rules from data with discrete and continuous
attributes. The RULEX [207] algorithm is based on constrained MLP networks with
pairs of sigmoidal functions combined to form ridges or local bumps. Setiono also
proposed the FERNN method [208], which extracts oblique rules, but the rules can
sometimes be simplified to M-of-N rules. Ozbakir et al. [209] presented a method for
rule extraction, which uses differential evolution algorithm for training and ant colony
optimization algorithm for extracting logical rules. Kim and Lee [210] proposed an
algorithm based on feature extraction and feature combination for neural networks
with two hidden layers. Gupta et al. [205] proposed a method, which extracts rules by
directly interpreting the strengths of connection weights in a trained network. Krish-
nan et al., [211] proposed a search technique for rule extraction from neural networks,
which by sorting and ordering the input weights to neurons finds the combinations of
inputs (and thus the rules) that activate the neuron.

REFANN - Decompositional Rule Extraction for Regression Tasks
Setiono et. al. [212] proposed a method called REFANN for rule extraction from

neural networks trained for regression problems. REFANN first prunes the network to
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limit its size and then extracts linear rules by approximating the hidden unit activation
functions by piecewise linear functions as shown in Fig. 18.2.

REFANN attempts to provide an explanation for the network outputs by replacing
the nonlinear mapping of a pruned network by a set of linear regression equations.
Using the weights of a trained network, the input space is divided into a small num-
ber of subregions such that the prediction for the samples in the same subregion can
be computed by a single linear equation. REFANN approximates the nonlinear hy-
perbolic tangent activation function of the hidden units using a simple three-piece or
five-piece linear function. It then generates rules in the form of linear equations from
the trained network. The conditions in these rules divide the input space into one or
more subregions. For each subregion, a linear equation that approximates the network
output is generated.

In general, a rule condition is defined in terms of the weighted sum of the inputs,
which corresponds to an oblique hyperplane in the input space. This type of rule con-
dition can be difficult for the users to interpret. In some cases, the oblique hyperplanes
can be replaced by hyperplanes that are parallel to the axes by employing a classifica-
tion method such as C4.5 in the optional step.

Fig. 18.2. The idea of linear-piece approximation of hyperbolic activation function in
the REFANN method.

18.6.2 Pedagogical Rule Extraction from Neural Networks

Pedagogical rules are obtained by mapping the input-output relationships as closely
as possible to the prediction of neural network. It is usually easier to obtain simpler
rules in this way, however the neural network is treated as a black box, so we do not
get an explanation of its inner knowledge representation.
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Pedagogical rule extraction only build the logical rules using the neural network
prediction, but they do not explain how the neural network reached the conclusions.
Thus these rules may provide less solid proof for users that the decision the network
took is correct. For that reason we only very shortly review some of them just to give
the reader a general outlook on how the methods work.

Validity Interval Analysis (VIA)
An example of global methods is Validity Interval Analysis (VIA) proposed by

Thrun [213]. The key idea in VIA is to attach intervals to the activation range of each
neuron (or a subset of all neurons), such that the network activation must lie within
these intervals, called validity intervals I. VIA checks whether there exists a set of
network activations inside the validity intervals. It does this by iteratively refining the
validity intervals, excluding activations that are probably inconsistent with other in-
tervals. The obtained rules are prepositional if-then rules, where the precondition is
given by a set of intervals for the individual input values and the output is a single
target category. Rules of this type can be written as:

if input is contained in the hypercube I then class is C (or shortly: I then C)

Two types of approaches can be distinguished: specific-to-general and general-to-
specific. In a specific-to-general approach we start with specific rules that are easy to
verify and gradually generalize them by enlarging the corresponding validity intervals.
In a general-to-specific approach we start from rules like "everything is in class C" and
then a new rule can be generated by splitting the hypercube spanned by the old rule.

GEX and GenPar
Two similar pedagogical rule extraction methods called GEX and Genoa were pro-

posed in [214] and [215]. Thirst the MLP network predicts the class of all the in-
stances. Then a genetic algorithm-based rule extraction module generates rules for the
class, which was predicted by the neural network. The advantage of that approach is
that the neural network by its nature removes some noise from the data, thus the rules
get simpler, better reflect the real properties of the data and are more comprehensive.
The process is performed as follows: first a rule set is encoded in the chromosome.
Then the training instances are applied to the rule set and the neural network. Each
individual in the genetic population is evaluated with respect to its accuracy (num-
ber of misclassified examples) and comprehensibility (number of rules and premises).
Then the genetic algorithm searches for the best individuals by calculating the total
fitness value for each of them and performs the typical genetic operations of crossover
and mutation to produce the next generation. This method follows the key idea of
the TREPAN algorithm, however instead of using decision trees, it uses genetic algo-
rithms to generate and optimize the logical rules.
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18.6.3 Hybrid Rule Extraction from Neural Networks

The idea of hybrid methods is that they use partially the compositional and partially
the pedagogical approach. An example of a hybrid method is FERNN (Fast Extrac-
tion of Rules from Neural Networks) proposed by Setiono [208]. FERNN extracts
the rules without the time consuming weight pruning. First the identification of use-
ful hidden units is performed based on the information contained in these units. For
this purpose C4.5 is employed (pedagogical part). However, identification of relevant
connections between input and hidden units is based on magnitudes of the weights
(decompositional part). In this way FERNN is really a mixed algorithm.

18.7 Conclusions

Several methods of rule extraction from trained neural networks were proposed in the
literature. The decompositional approach is most interesting, as it allows directly to
understand (at least to some degree) how the network works and how the decisions
were taken. However, the problem with most approaches is that the rules are only
some approximation of the real connections in the neural network and therefore they
describe the network only with a limited accuracy. Thus we proposed a method called
DSRE, which allows for exact description of the network without excessive complex-
ity of the generated rules.

The DSRE network combines the advantages of MLP neural networks with the
possibility of extracting simple rules in a comprehensive way. The training algorithm
is based on typical neural network algorithms with additional penalty term to enforce
the integer weight and with variable sigmoid slope to finally lead the network to a state,
where extracting logical rules is straightforward. The hidden neurons generate the M-
of-N rules, but they can frequently be reduced to simpler to understand AND + OR
operations.

The quality of results on the popular benchmark datasets is comparable with the
best results obtained from other methods, while there is an additional functionality of
obtaining logical rules, which perfectly match the network properties. The process of
logical rule extraction automatically performs feature selection and instance selection
as outlier detection and removal. Instance selection as data condensation can be per-
formed in the same way as in standard MLP networks by eliminating these instances,
on which the network makes the smallest errors in classification tasks before increas-
ing the sigmoid slope. Additionally an oblique part can be added to the rules what
increases the prediction quality especially in regression problems.



Chapter 19
Summary and Conclusions

A lot of instance selection methods have been developed, especially in recent years.
In this book we have presented three main groups of methods and some representative
solutions in each of them.

Instance selection approaches can be classified using the following criteria:

1. Purpose of the selection:

• condensation methods
• noise filters

2. Target:

• single-output classification
• single-output regression
• multi-output classification
• multi-output regression
• multi-output mixed classification and regression

3. Groups of the algorithms:

• similarity based
• evolutionary

– single-objective
– multi-objective

• embedded into learning of predictive models
• hybrid and others

4. Joint processes:

• only instance selection
• instance selection together with feature selection
• instance selection together with feature selection and logical rule extraction

231
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In many of the above items we have also presented our own solutions or improve-
ments to the existing ones. Obviously, each of the groups has advantages and dis-
advantages and choosing a given method and its parameters should depend on two
factors: the data properties and the user preferences. The preferences can include the
following parameters:

1. compression vs accuracy trade-off
2. algorithm running time
3. algorithm complexity, easiness to incorporate it into our software
4. understandability of the accept/reject decision made by the algorithm

To maximize the first criterion, we can to try an ensemble of the multi-objective
evolutionary-based instance selection methods with multiply Pareto front merging,
data partitioning and with an inner evaluation model being the same as the final pre-
dictor. However, this method will be very complex to implement, will have high run-
ning time (other inner evaluator than k-NN and ensemble). Moreover, the ensembles
of the MEISR2 methods have not been tested by us yet, so it is not guarantied that this
will perform better than a single algorithm, but it is surely worth trying. The next point
is that evolutionary methods do not provide an explanation, why particular decision
was made. This is frequently not concern, but for some users it cam be important.

To minimize the algorithm running time, we can use CNN with some method of ac-
celerating distance matrix calculations. In regression tasks we can also easily partition
the data for T-CNN. But again CNN is usually not the best method and the simplic-
ity of this solution will not be excellent, because of the operations performed with
the distance matrix. The understandability will be better than of the multi-objective
evolutionary-based solution, but still not perfect due to the random order in which
CNN processes data.

To allow easy implementation the algorithm has to be simple. Obviously a simple
method will not perform very well and will not be the fastest.

The DROP3 and DROP5 algorithms are very good in terms of understandability,
as they perform instance selection based on defined assumptions about the data prop-
erties. They usually perform better than ENN followed by CNN and also than some
other similarity-based methods, but in most cases not so well as the evolutionary in-
stance selection and their running time is relatively high comparing to other methods.

In practical implementations, we usually need to find a reasonable compromise
between all the criteria. An example of the compromise, which we proposed is to use
k-NN with optimal k and an appropriate weighting scheme as an inner evaluator of
the evolutionary instance selection.

In Fig. 19.1 we show the general trend in different approaches to instance selec-
tion in regression tasks. The lowest grey (or grey-green) line represents an untested
solution, so it is shown with dotted line, and the position of the line is only based
on our assumptions, in practice so good performance it is not guaranteed. Moreover,
for specific datasets frequently some earlier method on the list obtained better results
than the later methods. Another advantage of the earlier methods is their simplicity
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and frequently also lower computational cost. For example introducing the same inner
evaluator as the final predictor (if it is not k-NN) to evolutionary-based instance selec-
tion increases the computational cost by about three orders of magnitude and adding
additionally ensembles by another order of magnitude. For that reason going below
the orange line in Fig. 19.1 may be frequently impractical.

Fig. 19.1. Trends of average Pareto fronts obtained with different instance selection
approaches for regression tasks.

There are some differences in the instance selection performance for classification
tasks:

• Much stronger compression can be obtained in classification than in regression
tasks.

• Using instance selection, the prediction accuracy can be less frequently improved
in classification tasks than in regression tasks.

• Ensemble methods allow to adjust the accuracy-compression balance in classifi-
cation but less frequently allow to improve both criteria at the same time than in
regression tasks.

Besides the listed differences, the general trends for instance selection in classifi-
cation tasks are similar to those in regression tasks shown in Fig. 19.1 (assuming that
there is 1− accuracy on the vertical axis).
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Other topics discussed in the book included joint feature and instance selection and
instance selection embedded into neural network learning process.

Both feature selection and instance selection allow to reduce the data size and opti-
mally also to improve prediction results. As in instance selection always noise should
be removed first and data condensation performed as the next step, in joint feature
and instance selection also noise should be removed first. For that purpose we must
identify the main source of noise and in most typical data it is rather associated with
features than with instances. For that reason in these cases feature selection should
be performed first. If the noise is equally distributed in features and instances then
iterative approaches work well.

Neural networks by their nature perform feature weighting and differently respond
to different instances. However, to make a practical use of this, some modifications to
the training procedure must be made, as special dynamic error functions, controlling
the speed of learning and removing some instances at appropriate time or designing
a special neural network structures especially dedicated to data selection and logical
rule extraction, as was presented in the last chapter. The accuracy of data selection
performed by neural networks may be comparable to that obtained with similarity-
based methods, but there are two other advantages: we do not have to add a separate
instance selection and/or feature selection step to the process and by analyzing which
instances/features were rejected by what mechanism during network learning we can
better understand the dataset and how the network processes it. Disadvantages of this
solution may comprise sometimes higher computational cost and difficult implemen-
tation.

We presented important problems of data selection and many solutions to them,
including those developed or co-developed by the author, which were discussed in
more detail. We believe that this book was a useful source of information on data
reduction and noise removal with instance selection and that it allowed the reader to
get a good insight into this field.
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